Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 24:14:168.
doi: 10.1186/1471-2180-14-168.

Functional genomics to identify the factors contributing to successful persistence and global spread of an antibiotic resistance plasmid

Affiliations

Functional genomics to identify the factors contributing to successful persistence and global spread of an antibiotic resistance plasmid

Jennifer L Cottell et al. BMC Microbiol. .

Abstract

Background: The spread of bacterial plasmids is an increasing global problem contributing to the widespread dissemination of antibiotic resistance genes including β-lactamases. Our understanding of the details of the biological mechanisms by which these natural plasmids are able to persist in bacterial populations and are able to establish themselves in new hosts via conjugative transfer is very poor. We recently identified and sequenced a globally successful plasmid, pCT, conferring β-lactam resistance.

Results: Here, we investigated six plasmid encoded factors (tra and pil loci; rci shufflon recombinase, a putative sigma factor, a putative parB partitioning gene and a pndACB toxin-antitoxin system) hypothesised to contribute to the 'evolutionary success' of plasmid pCT. Using a functional genomics approach, the role of these loci was investigated by systematically inactivating each region and examining the impact on plasmid persistence, conjugation and bacterial host biology. While the tra locus was found to be essential for all pCT conjugative transfer, the second conjugation (pil) locus was found to increase conjugation frequencies in liquid media to particular bacterial host recipients (determined in part by the rci shufflon recombinase). Inactivation of the pCT pndACB system and parB did not reduce the stability of this plasmid.

Conclusions: Our findings suggest the success of pCT may be due to a combination of factors including plasmid stability within a range of bacterial hosts, a lack of a fitness burden and efficient transfer rates to new bacterial hosts rather than the presence of a particular gene or phenotype transferred to the host. The methodology used in our study could be applied to other 'successful' globally distributed plasmids to discover the role of currently unknown plasmid backbone genes or to investigate other factors which allow these elements to persist and spread.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Plasmid map of pCT showing the relative positions of each target genes.
Figure 2
Figure 2
Conjugation frequencies of wild-type pCT and the pCT mutants on a solid surface (filled box) and in liquid (open box) from bacterial donor E. coli DH5α to A) a S. Typhimurium recipient and B) an E. coli recipient.

References

    1. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev. 2009;73(4):750–774. - PMC - PubMed
    1. van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2:203. - PMC - PubMed
    1. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009;64(suppl 1):i3–i10. - PubMed
    1. Piddock LJV. The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis. 2012;12(3):249–253. - PubMed
    1. Hawkey PM. The growing burden of antimicrobial resistance. J Antimicrob Chemother. 2008;62(Suppl 1):i1–i9. - PubMed

LinkOut - more resources