Diagnostically relevant facial gestalt information from ordinary photos
- PMID: 24963138
- PMCID: PMC4067075
- DOI: 10.7554/eLife.02020
Diagnostically relevant facial gestalt information from ordinary photos
Abstract
Craniofacial characteristics are highly informative for clinical geneticists when diagnosing genetic diseases. As a first step towards the high-throughput diagnosis of ultra-rare developmental diseases we introduce an automatic approach that implements recent developments in computer vision. This algorithm extracts phenotypic information from ordinary non-clinical photographs and, using machine learning, models human facial dysmorphisms in a multidimensional 'Clinical Face Phenotype Space'. The space locates patients in the context of known syndromes and thereby facilitates the generation of diagnostic hypotheses. Consequently, the approach will aid clinicians by greatly narrowing (by 27.6-fold) the search space of potential diagnoses for patients with suspected developmental disorders. Furthermore, this Clinical Face Phenotype Space allows the clustering of patients by phenotype even when no known syndrome diagnosis exists, thereby aiding disease identification. We demonstrate that this approach provides a novel method for inferring causative genetic variants from clinical sequencing data through functional genetic pathway comparisons.DOI: http://dx.doi.org/10.7554/eLife.02020.001.
Keywords: clinical genetics; computational biology; computer vision; phenotyping.
Copyright © 2014, Ferry et al.
Conflict of interest statement
CPP: Senior editor,
The other authors declare that no competing interests exist.
Figures












Similar articles
-
Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability.BMC Biotechnol. 2017 Dec 19;17(1):90. doi: 10.1186/s12896-017-0410-1. BMC Biotechnol. 2017. PMID: 29258477 Free PMC article.
-
Efficiency of Computer-Aided Facial Phenotyping (DeepGestalt) in Individuals With and Without a Genetic Syndrome: Diagnostic Accuracy Study.J Med Internet Res. 2020 Oct 22;22(10):e19263. doi: 10.2196/19263. J Med Internet Res. 2020. PMID: 33090109 Free PMC article.
-
GestaltMML: Enhancing Rare Genetic Disease Diagnosis through Multimodal Machine Learning Combining Facial Images and Clinical Texts.ArXiv [Preprint]. 2024 Apr 22:arXiv:2312.15320v2. ArXiv. 2024. PMID: 38711434 Free PMC article. Preprint.
-
[Artificial intelligence in the diagnosis of rare disorders: the development of phenotype analysis].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2022 Nov;65(11):1159-1163. doi: 10.1007/s00103-022-03602-2. Epub 2022 Oct 24. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2022. PMID: 36278975 Free PMC article. Review. German.
-
Computational facial analysis for rare Mendelian disorders.Am J Med Genet C Semin Med Genet. 2023 Sep;193(3):e32061. doi: 10.1002/ajmg.c.32061. Epub 2023 Aug 16. Am J Med Genet C Semin Med Genet. 2023. PMID: 37584245 Review.
Cited by
-
PURA-Related Developmental and Epileptic Encephalopathy: Phenotypic and Genotypic Spectrum.Neurol Genet. 2021 Nov 15;7(6):e613. doi: 10.1212/NXG.0000000000000613. eCollection 2021 Dec. Neurol Genet. 2021. PMID: 34790866 Free PMC article.
-
Assessing the Big Five personality traits using real-life static facial images.Sci Rep. 2020 May 22;10(1):8487. doi: 10.1038/s41598-020-65358-6. Sci Rep. 2020. PMID: 32444847 Free PMC article.
-
The future role of facial image analysis in ACMG classification guidelines.Med Genet. 2023 Jun 13;35(2):115-121. doi: 10.1515/medgen-2023-2014. eCollection 2023 Jun. Med Genet. 2023. PMID: 38840866 Free PMC article.
-
Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability.BMC Biotechnol. 2017 Dec 19;17(1):90. doi: 10.1186/s12896-017-0410-1. BMC Biotechnol. 2017. PMID: 29258477 Free PMC article.
-
Quantitative facial phenotyping for Koolen-de Vries and 22q11.2 deletion syndrome.Eur J Hum Genet. 2021 Sep;29(9):1418-1423. doi: 10.1038/s41431-021-00824-x. Epub 2021 Feb 18. Eur J Hum Genet. 2021. PMID: 33603161 Free PMC article.
References
-
- Allanson JE, Bohring A, Dorr HG, Dufke A, Gillessen-Kaesbach G, Horn D, Konig R, Kratz CP, Kutsche K, Pauli S, Raskin S, Rauch A, Turner A, Wieczorek D, Zenker M. The face of Noonan syndrome: does phenotype predict genotype. American Journal of Medical Genetics. 2010;152A:1960–1966. doi: 10.1002/ajmg.a.33518. - DOI - PMC - PubMed
-
- Bastian M, Heymann S, Jacomy M. Gephi: An open source software for exploring and manipulating networks. AAAI Publications, Third International AAAI Conference on Weblogs and Social Media 2009
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials