The evolution of parasitism in Nematoda
- PMID: 24963797
- PMCID: PMC4413787
- DOI: 10.1017/S0031182014000791
The evolution of parasitism in Nematoda
Abstract
Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated.
Keywords: horizontal gene transfer.
Figures

Similar articles
-
How Can We Understand the Genomic Basis of Nematode Parasitism?Trends Parasitol. 2017 Jun;33(6):444-452. doi: 10.1016/j.pt.2017.01.014. Epub 2017 Mar 6. Trends Parasitol. 2017. PMID: 28274802 Free PMC article. Review.
-
Genome Evolution of Plant-Parasitic Nematodes.Annu Rev Phytopathol. 2017 Aug 4;55:333-354. doi: 10.1146/annurev-phyto-080516-035434. Epub 2017 Jun 7. Annu Rev Phytopathol. 2017. PMID: 28590877 Review.
-
How to become a parasite - lessons from the genomes of nematodes.Trends Genet. 2009 May;25(5):203-9. doi: 10.1016/j.tig.2009.03.006. Epub 2009 Apr 8. Trends Genet. 2009. PMID: 19361881
-
Role of horizontal gene transfer in the evolution of plant parasitism among nematodes.Methods Mol Biol. 2009;532:517-35. doi: 10.1007/978-1-60327-853-9_30. Methods Mol Biol. 2009. PMID: 19271205 Review.
-
Nematoda: genes, genomes and the evolution of parasitism.Adv Parasitol. 2003;54:101-95. doi: 10.1016/s0065-308x(03)54003-9. Adv Parasitol. 2003. PMID: 14711085 Review.
Cited by
-
Comparative transcriptome profiling approach to glean virulence and immunomodulation-related genes of Fasciola hepatica.BMC Genomics. 2015 May 9;16(1):366. doi: 10.1186/s12864-015-1539-8. BMC Genomics. 2015. PMID: 25956885 Free PMC article.
-
Importance of TGFβ in Cancer and Nematode Infection and Their Interaction-Opinion.Biomolecules. 2022 Oct 26;12(11):1572. doi: 10.3390/biom12111572. Biomolecules. 2022. PMID: 36358922 Free PMC article. Review.
-
Structure-Based Bioisosterism Design, Synthesis, Biological Evaluation and In Silico Studies of Benzamide Analogs as Potential Anthelmintics.Molecules. 2022 Apr 20;27(9):2659. doi: 10.3390/molecules27092659. Molecules. 2022. PMID: 35566007 Free PMC article.
-
Entomopathogenic nematodes and their symbiotic bacteria: from genes to field uses.Front Insect Sci. 2023 Aug 29;3:1195254. doi: 10.3389/finsc.2023.1195254. eCollection 2023. Front Insect Sci. 2023. PMID: 38469514 Free PMC article. Review.
-
Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism.PLoS Pathog. 2019 Jul 23;15(7):e1007960. doi: 10.1371/journal.ppat.1007960. eCollection 2019 Jul. PLoS Pathog. 2019. PMID: 31335899 Free PMC article.
References
-
- Abad P., Gouzy J., Aury J. M., Castagnone-Sereno P., Danchin E. G., Deleury E., Perfus-Barbeoch L., Anthouard V., Artiguenave F., Blok V. C., Caillaud M. C., Coutinho P. M., Dasilva C., De Luca F., Deau F., Esquibet M., Flutre T., Goldstone J. V., Hamamouch N., Hewezi T., Jaillon O., Jubin C., Leonetti P., Magliano M., Maier T. R., Markov G. V., McVeigh P., Pesole G., Poulain J., Robinson-Rechavi M., Sallet E., Segurens B., Steinbach D., Tytgat T., Ugarte E., van Ghelder C., Veronico P., Baum T. J., Blaxter M., Bleve-Zacheo T., Davis E. L., Ewbank J. J., Favery B., Grenier E., Henrissat B., Jones J. T., Laudet V., Maule A. G., Quesneville H., Rosso M. N., Schiex T., Smant G., Weissenbach J. and Wincker P. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26, 882–884. - PubMed
-
- Aguinaldo A. M. A., Turbeville J. M., Linford L. S., Rivera M. C., Garey J. R., Raff R. A. and Lake J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493. - PubMed
-
- Bai X., Adams B. J., Ciche T. A., Clifton S., Gaugler R., Kim K. S., Spieth J., Sternberg P. W., Wilson R. K. and Grewal P. S. (2013). A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLOS ONE 8, . doi: 10.1371/journal.pone.0069618. - DOI - PMC - PubMed
-
- Bandi C., McCall J. W., Genchi C., Corona S., Venco L. and Sacchi L. (1999). Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. International Journal for Parasitology 29, 357–364. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources