Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;17(11):1895-904.
doi: 10.1017/S1461145714000959. Epub 2014 Jun 25.

Chronic administration of antipsychotics attenuates ongoing and ketamine-induced increases in cortical γ oscillations

Affiliations
Free article

Chronic administration of antipsychotics attenuates ongoing and ketamine-induced increases in cortical γ oscillations

Paul M Anderson et al. Int J Neuropsychopharmacol. 2014 Nov.
Free article

Abstract

Noncompetitive N-methyl-d-aspartate receptor (NMDAr) antagonists can elicit many of the symptoms observed in schizophrenia in healthy humans, and induce a behavioural phenotype in animals relevant to psychosis. These compounds also elevate the power and synchrony of gamma (γ) frequency (30-80 Hz) neural oscillations. Acute doses of antipsychotic medications have been shown to reduce ongoing γ power and to inhibit NMDAr antagonist-mediated psychosis-like behaviour in rodents. This study aimed to investigate how a chronic antipsychotic dosing regimen affects ongoing cortical γ oscillations, and the electrophysiological and behavioural responses induced by the NMDAr antagonist ketamine. Male Wistar rats were chronically treated with haloperidol (0.25 mg/kg/d), clozapine (5 mg/kg/d), LY379268 (0.3 mg/kg/d) or vehicle for 28 d, delivered by subcutaneous (s.c.) osmotic pumps. Weekly electrocorticogram (ECoG) recordings were acquired. On day 26, ketamine (5 mg/kg, s.c.) was administered, and ECoG and locomotor activity were simultaneously measured. These results were compared with data generated previously following acute treatment with these antipsychotics. Sustained and significant decreases in ongoing γ power were observed during chronic administration of haloperidol (64%) or clozapine (43%), but not of LY379268 (2% increase), compared with vehicle. Acute ketamine injection concurrently increased γ power and locomotor activity in vehicle-treated rats, and these effects were attenuated in rats chronically treated with all three antipsychotics. The ability of haloperidol or clozapine to inhibit ketamine-induced elevation in γ power was not observed following acute administration of these drugs. These results indicate that modulation of γ power may be a useful biomarker of chronic antipsychotic efficacy.

PubMed Disclaimer

Publication types

LinkOut - more resources