Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 26:14:470.
doi: 10.1186/1471-2407-14-470.

Family-specific, novel, deleterious germline variants provide a rich resource to identify genetic predispositions for BRCAx familial breast cancer

Affiliations

Family-specific, novel, deleterious germline variants provide a rich resource to identify genetic predispositions for BRCAx familial breast cancer

Hongxiu Wen et al. BMC Cancer. .

Abstract

Background: Genetic predisposition is the primary risk factor for familial breast cancer. For the majority of familial breast cancer, however, the genetic predispositions remain unknown. All newly identified predispositions occur rarely in disease population, and the unknown genetic predispositions are estimated to reach up to total thousands. Family unit is the basic structure of genetics. Because it is an autosomal dominant disease, individuals with a history of familial breast cancer must carry the same genetic predisposition across generations. Therefore, focusing on the cases in lineages of familial breast cancer, rather than pooled cases in disease population, is expected to provide high probability to identify the genetic predisposition for each family.

Methods: In this study, we tested genetic predispositions by analyzing the family-specific variants in familial breast cancer. Using exome sequencing, we analyzed three families and 22 probands with BRCAx (BRCA-negative) familial breast cancer.

Results: We observed the presence of family-specific, novel, deleterious germline variants in each family. Of the germline variants identified, many were shared between the disease-affected family members of the same family but not found in different families, which have their own specific variants. Certain variants are putative deleterious genetic predispositions damaging functionally important genes involved in DNA replication and damaging repair, tumor suppression, signal transduction, and phosphorylation.

Conclusions: Our study demonstrates that the predispositions for many BRCAx familial breast cancer families can lie in each disease family. The application of a family-focused approach has the potential to detect many new predispositions.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pedigrees of the three families used in the study. BC (breast cancer), Bt (brain tumor), CRC (colorectal cancer), Lu (lung cancer), En (endometrium cancer), Ki (kidney cancer), Lym (lymphoma), NHL (non-Hodgkin lymphoma), OC (ovarian cancer), Pro (prostate cancer). Sar (sarcoma), Sk (skin cancer).
Figure 2
Figure 2
Comparison of the variants in BRCAx families and probands. A. Comparison in the three families. B. Comparison in the probands. The results show that the variants detected in the cancer-affected family members are highly family-specific. The higher rate (18%) of the shared variants in the probands are likely due to the remaining normal variants not filtered in the probands and the larger number of families represented by the probands than the three families.
Figure 3
Figure 3
A model for the genetic predispositions in familial breast cancer. The known predisposition in BRCA1 has the highest sharing frequency in the disease population, other known predispositions decrease their frequencies towards extreme rarity in the disease populations, and the family-specific predispositions are enriched in many disease families without known predispositions. The biggest circle represents the entire genetic predispositions in familial breast cancer. The open circles represent the shared, known predispositions, and the black circles represent the family-specific predispositions.

Similar articles

Cited by

References

    1. American Cancer Society. Cancer Facts & Figures – 2013. 2013.
    1. Rahman N, Stratton MR. The genetics of breast cancer susceptibility. Annu Rev Genet. 1998;32:95–121. - PubMed
    1. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40:17–22. - PubMed
    1. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J. et al.The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–404. - PMC - PubMed
    1. Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, Neuhausen SL, John EM, Andrulis IL, Terry MB, Daly M, Buys S, Le Calvez-Kelm F, Lonie A, Pope BJ, Tsimiklis H, Voegele C, Hilbers FM, Hoogerbrugge N, Barroso A, Osorio A, Giles GG, Devilee P, Benitez J, Hopper JL, Tavtigian SV, Goldgar DE, Southey MC. Breast Cancer Family Registry; Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet. 2012;90:734–739. - PMC - PubMed

Publication types

Supplementary concepts

LinkOut - more resources