Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 21;3(1):1-17.
doi: 10.3390/biom3010001.

Molecular Insights into Poly(ADP-ribose) Recognition and Processing

Affiliations

Molecular Insights into Poly(ADP-ribose) Recognition and Processing

Roko Zaja et al. Biomolecules. .

Abstract

Poly(ADP-ribosyl)ation is a post-translational protein modification involved in the regulation of important cellular functions including DNA repair, transcription, mitosis and apoptosis. The amount of poly(ADP-ribosyl)ation (PAR) in cells reflects the balance of synthesis, mediated by the PARP protein family, and degradation, which is catalyzed by a glycohydrolase, PARG. Many of the proteins mediating PAR metabolism possess specialised high affinity PAR-binding modules that allow the efficient sensing or processing of the PAR signal. The identification of four such PAR-binding modules and the characterization of a number of proteins utilising these elements during the last decade has provided important insights into how PAR regulates different cellular activities. The macrodomain represents a unique PAR-binding module which is, in some instances, known to possess enzymatic activity on ADP-ribose derivatives (in addition to PAR-binding). The most recently discovered example for this is the PARG protein, and several available PARG structures have provided an understanding into how the PARG macrodomain evolved into a major enzyme that maintains PAR homeostasis in living cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic representation of poly(ADP-ribosyl)ation (PAR) metabolism. PARPs catalyse the transfer of an ADP-ribose moiety from NAD+ to a target protein with the concomitant release of nicotinamide. The first ADP-ribose is attached via an ester linkage to the glutamate on the target protein. The subsequent transfer of additional ADP-ribose molecules through the 2',1''- and 2'',1'''-O-glycosidic bond leads to the synthesis of linear and branched PAR polymers, respectively. PARG cleaves PAR chains and releases mono(ADP-ribose), whilst the proximal ADP-ribose is removed by ADP-ribosyl protein lyase. Regions of PAR recognised by Poly(ADP-Ribose)-Binding Zinc Finger (PBZ), WWE and macrodomain PAR-binding modules are boxed.
Figure 2
Figure 2
Domain structure of different PARG proteins. The full-length human PARG111 contains an N-terminal regulatory region (A-domain; blue) which includes a nuclear localisation signal (NLS), PCNA binding motif (PIP box) and a nuclear export signal (NES). Full length human PARG also contains a mitochondrial targeting sequence (MTS), a highly structured and conserved B-domain (red), and the essential catalytic macrodomain (C-domain; green). Two shorter isoforms of human PARG, PARG102 and PARG99, lack the NLS and PIP box, while PARG60 lacks the entire regulatory region. Human and Tetrahymena thermophila PARGs represent canonical-type PARGs and share high conservation in their B-domain and macrodomain. Highly divergent bacterial-type PARG represented by Thermomonospora curvata PARG contains the catalytic macrodomain and an N-terminal accessory element (yellow).
Figure 3
Figure 3
PARG catalytic mechanism. The positions of the reaction product N ADP-ribose (teal backbone; observed in the crystal structure) and a model of N-1 ADP-ribose (yellow) are represented in the Tetrahymena thermophila PARG active site. The key O-glycosydic ribose-ribose bond is positioned in direct hydrogen bonding contact with the catalytic glutamate 256 (Glu756 in human PARG; grey brackets). The 2’-OH leaving group of n-1 ADP-ribose’ is protonated (black arrow) by the catalytic glutamate. A subsequently formed oxocarbenium intermediate is stabilised by the close proximity of the terminal diphosphate group, which is restrained by the conserved phenylalanine 371 (Phe875 in human PARG). A water molecule (shown in spheres) is ideally positioned to attack this oxocarbenium intermediate. This leads to release of ADP-ribose.

References

    1. Hassa P.O., Haenni S.S., Elser M., Hottiger M.O. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Bio. Rev. 2006;7:789–829. - PMC - PubMed
    1. Yates S.P., Jørgensen R., Andersen G.R., Merrill R. Stealth and mimicry by deadly bacterial toxins. Trends Biochem. Sci. 2006;31:123–133. doi: 10.1016/j.tibs.2005.12.007. - DOI - PubMed
    1. Holbourn K.P., Shone C.C., Acharya K.R. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins. FEBS J. 2006;273:4579–4593. doi: 10.1111/j.1742-4658.2006.05442.x. - DOI - PubMed
    1. Di Girolamo M., Dani N., Stilla A., Corda D. Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. FEBS J. 2005;272:4565–4575. doi: 10.1111/j.1742-4658.2005.04876.x. - DOI - PubMed
    1. Laing S., Unger M., Koch-Nolte F., Haag F. ADP-ribosylation of arginine. Amino acids. 2011;41:257–269. doi: 10.1007/s00726-010-0676-2. - DOI - PMC - PubMed

LinkOut - more resources