Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 15:62:13-8.
doi: 10.1016/j.bios.2014.06.026. Epub 2014 Jun 19.

Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip

Affiliations

Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip

Lei Wu et al. Biosens Bioelectron. .

Abstract

As thiocyanate (SCN(-)) acts as an important biomarker in human health assessment, there remains an urgent need to realize rapid and reproducible analysis of SCN(-) in body fluids. Here, a droplet microfluidic device has been designed and fabricated for SCN(-) detection in real human serum and saliva using the surface enhanced Raman scattering (SERS) technique. Only a few minutes are needed for the whole detection process which simply cost a few microliters of real sample. Gold@silver core-shell nanorods (Au@Ag NRs) with a large SERS enhancement factor were selected to capture SCN(-) ions in body fluids. The intensity of SERS peak at around 2100 cm(-1), which originates from the -C≡N stretching mode, was used to indicate the concentrations of SCN(-) ions. Importantly, by generating a droplet environment for mixing reagents and acquiring signals, this microfluidic platform possesses the advantages of an improved reproducibility and reduced time consumption. For practical applications, the SERS-microfluidic system is capable to achieve rapid analysis of SCN(-) in the presence of human serum, which is very important for realizing the detection in real biological samples. Additionally, SCN(-) in saliva samples was detected in the SERS-microfluidic chip and the results provide useful information for distinguishing between smokers and nonsmokers.

Keywords: Microfluidic; Saliva; Serum; Surface enhanced Raman scattering; Thiocyanate detection.

PubMed Disclaimer

Publication types