Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2014 Jun 28;18(3):R134.
doi: 10.1186/cc13952.

Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial

Randomized Controlled Trial

Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial

Alberto Palazzuoli et al. Crit Care. .

Abstract

Introduction: Intravenous loop diuretics are a cornerstone of therapy in acutely decompensated heart failure (ADHF). We sought to determine if there are any differences in clinical outcomes between intravenous bolus and continuous infusion of loop diuretics.

Methods: Subjects with ADHF within 12 hours of hospital admission were randomly assigned to continuous infusion or twice daily bolus therapy with furosemide. There were three co-primary endpoints assessed from admission to discharge: the mean paired changes in serum creatinine, estimated glomerular filtration rate (eGFR), and reduction in B-type natriuretic peptide (BNP). Secondary endpoints included the rate of acute kidney injury (AKI), change in body weight and six months follow-up evaluation after discharge.

Results: A total of 43 received a continuous infusion and 39 were assigned to bolus treatment. At discharge, the mean change in serum creatinine was higher (+0.8 ± 0.4 versus -0.8 ± 0.3 mg/dl P <0.01), and eGFR was lower (-9 ± 7 versus +5 ± 6 ml/min/1.73 m(2) P <0.05) in the continuous arm. There was no significant difference in the degree of weight loss (-4.1 ± 1.9 versus -3.5 ± 2.4 kg P = 0.23). The continuous infusion arm had a greater reduction in BNP over the hospital course, (-576 ± 655 versus -181 ± 527 pg/ml P = 0.02). The rates of AKI were comparable (22% and 15% P = 0.3) between the two groups. There was more frequent use of hypertonic saline solutions for hyponatremia (33% versus 18% P <0.01), intravenous dopamine infusions (35% versus 23% P = 0.02), and the hospital length of stay was longer in the continuous infusion group (14. 3 ± 5 versus 11.5 ± 4 days, P <0.03). At 6 months there were higher rates of re-admission or death in the continuous infusion group, 58% versus 23%, (P = 0.001) and this mode of treatment independently associated with this outcome after adjusting for baseline and intermediate variables (adjusted hazard ratio = 2.57, 95% confidence interval, 1.01 to 6.58 P = 0.04).

Conclusions: In the setting of ADHF, continuous infusion of loop diuretics resulted in greater reductions in BNP from admission to discharge. However, this appeared to occur at the consequence of worsened renal filtration function, use of additional treatment, and higher rates of rehospitalization or death at six months.

Trial registration: ClinicalTrials.gov NCT01441245. Registered 23 September 2011.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Algorithm of diuretic treatment during randomization and study period: in both arms escalation doses were decided upon based on diuretic response, doubling previous dose administration in a step by step protocol. ADHF, acute decompensated heart failure; BW, body weight.
Figure 2
Figure 2
Percentage of rehospitalization and death in all population (a); comparison of adverse events between continuous and bolus groups during 6-months follow-up period (b).
Figure 3
Figure 3
Kaplan Meier curves for the risk of rehospitalization or death at 180 days in those randomized to continuous (solid line) and bolus loop diuretics (broken line).

Comment in

References

    1. Felker GM, O'Connor CM, Braunwald E. Loop diuretics in acute decompensated heart failure: necessary? Evil? A necessary evil? Circ Heart Fail. 2009;2:56–62. - PMC - PubMed
    1. Gupta S, Neyses L. Diuretic usage in heart failure: a continuing conundrum in 2005. Eur Heart J. 2005;26:644–649. - PubMed
    1. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A, Bax JJ, Baumgartner H, Ceconi C. ESC Committee for Practice Guidelines (CPG) et al.ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–1847. - PubMed
    1. Chuen MJ, MacFadyen RJ. Dose-dependent association between use of loop diuretics and mortality in advanced systolic heart failure. Am J Cardiol. 2006;98:1416–1417. - PubMed
    1. Abdel-Qadir HM, Tu JW, Yun L, Austin PC, Newton GE, Lee DS. Diuretic dose and long-term outcome in elderly patients with heart failure after hospitalization. Am Heart J. 2010;160:264–271. - PubMed

Publication types

MeSH terms

Associated data