Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 22;47(11):2578-83.
doi: 10.1016/j.jbiomech.2014.06.002. Epub 2014 Jun 11.

Biomechanical studies in an ovine model of non-accidental head injury

Affiliations

Biomechanical studies in an ovine model of non-accidental head injury

R W G Anderson et al. J Biomech. .

Abstract

This paper presents the head kinematics of a novel ovine model of non-accidental head injury (NAHI) that consists only of a naturalistic oscillating insult. Nine, 7-to-10-day-old anesthetized and ventilated lambs were subjected to manual shaking. Two six-axis motion sensors tracked the position of the head and torso, and a triaxial accelerometer measured head acceleration. Animals experienced 10 episodes of shaking over 30 min, and then remained under anesthesia for 6h until killed by perfusion fixation of the brain. Each shaking episode lasted for 20s resulting in about 40 cycles per episode. Each cycle typically consisted of three impulsive events that corresponded to specific phases of the head's motion; the most substantial of these were interactions typically with the lamb's own torso, and these generated accelerations of 30-70 g. Impulsive loading was not considered severe. Other kinematic parameters recorded included estimates of head power transfer, head-torso flexion, and rate of flexion. Several styles of shaking were also identified across episodes and subjects. Axonal injury, neuronal reaction and albumin extravasation were widely distributed in the hemispheric white matter, brainstem and at the craniocervical junction and to a much greater magnitude in lower body weight lambs that died. This is the first biomechanical description of a large animal model of NAHI in which repetitive naturalistic insults were applied, and that reproduced a spectrum of injury associated with NAHI.

Keywords: Animal model; Biomechanics; Non-accidental head injury.

PubMed Disclaimer

Publication types

LinkOut - more resources