Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jun 28;20(24):7665-74.
doi: 10.3748/wjg.v20.i24.7665.

Hepatitis B virus lineages in mammalian hosts: potential for bidirectional cross-species transmission

Affiliations
Review

Hepatitis B virus lineages in mammalian hosts: potential for bidirectional cross-species transmission

Cibele R Bonvicino et al. World J Gastroenterol. .

Abstract

The hepatitis B virus (HBV) is a cosmopolitan infectious agent currently affecting over 350 million people worldwide, presently accounting for more than two billion infections. In addition to man, other hepatitis virus strains infect species of several mammalian families of the Primates, Rodentia and Chiroptera orders, in addition to birds. The mounting evidence of HBV infection in African, Asian and neotropical primates draws attention to the potential cross-species, zoonotic transmission of these viruses to man. Moreover, recent evidence also suggests the humans may also function as a source of viral infection to other mammals, particularly to domestic animals like poultry and swine. In this review, we list all evidence of HBV and HBV-like infection of nonhuman mammals and discuss their potential roles as donors or recipients of these viruses to humans and to other closely-related species.

Keywords: Cross-species transmission; Hepatitis B; Hepatitis B virus; Hepatitis B virus nonhuman host.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Geographic distribution of hepatitis B virus hosts. Primates: 1: Pan troglodytes verus; 2: P. t. vellerosus; 3: P. t. troglodytes and Gorilla gorilla gorilla; 4: P. t. schweinfurthii; 5: Hylobates lar; 6: Hylobates moloch; 7: Hylobates pileatus; 8: Hylobates agilis; 9: Nomascus gabriellae; 10: Nomascus leucogenys; 11: Nomascus concolor; 12: Pongo pygmaeus; 13: Papio ursinus; 14: Lagothrix cana; 15: Lagothrix poeppigii; 16: Lagothrix lugens; 17: Lagothrix lagothricha. RODENTIA: 18: Sciurus carolinensis; 19: Marmora monax; 20: Otospermophilus beecheyi; 21: Spermophilus parryii. Chiroptera: 22: Uroderma bilobatum (partial distribution); 23: Hipposideros ruber; 24: Rhinolophus alcyone; 25: Miniopterus fuliginosus. HBV: Hepatitis B virus; ASHV: Arctic squirrel HBV; BtHV: Bat (Miniopterus fuliginosus) hepatitis viruses; chHBV: Chimpanzee HBV; GSHV: Californian ground squirrel HBV; gibHBV: Gibbon HBV; HBV genA: Human HBV genotype A; HBHBV: Horseshoe bat HBV; RBHBV: Roundleaf bat HBV; TBHBV: Tent-making bat HBV; THBV: Tree squirrel HBV; WHV: Woodchuck HBV; WMHBV: Woolly monkey HBV.

Similar articles

Cited by

References

    1. Abdou Chekaraou M, Brichler S, Mansour W, Le Gal F, Garba A, Dény P, Gordien E. A novel hepatitis B virus (HBV) subgenotype D (D8) strain, resulting from recombination between genotypes D and E, is circulating in Niger along with HBV/E strains. J Gen Virol. 2010;91:1609–1620. - PubMed
    1. Heathcote EJ. Demography and presentation of chronic hepatitis B virus infection. Am J Med. 2008;121:S3–11. - PubMed
    1. Schiff ER. Optimizing management strategies in patients with chronic hepatitis B. Introduction. Am J Med. 2008;121:S1–S2. - PubMed
    1. Tan AT, Koh S, Goh V, Bertoletti A. Understanding the immunopathogenesis of chronic hepatitis B virus: an Asian prospective. J Gastroenterol Hepatol. 2008;23:833–843. - PubMed
    1. Cougot D, Neuveut C, Buendia MA. HBV induced carcinogenesis. J Clin Virol. 2005;34 Suppl 1:S75–S78. - PubMed

Publication types