GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography
- PMID: 24977582
- PMCID: PMC4083058
- DOI: 10.1364/OE.22.014871
GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography
Abstract
We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).
Figures



Similar articles
-
Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT.Opt Express. 2010 Oct 25;18(22):23472-87. doi: 10.1364/OE.18.023472. Opt Express. 2010. PMID: 21164690 Free PMC article.
-
Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.Opt Express. 2011 Dec 19;19(27):26891-904. doi: 10.1364/OE.19.026891. Opt Express. 2011. PMID: 22274272
-
Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.J Biomed Opt. 2009 Nov-Dec;14(6):060506. doi: 10.1117/1.3275463. J Biomed Opt. 2009. PMID: 20059237
-
Real-time compressive sensing spectral domain optical coherence tomography.Opt Lett. 2014 Jan 1;39(1):76-9. doi: 10.1364/OL.39.000076. Opt Lett. 2014. PMID: 24365826 Free PMC article.
-
Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.Opt Express. 2010 May 24;18(11):11772-84. doi: 10.1364/OE.18.011772. Opt Express. 2010. PMID: 20589038 Free PMC article.
Cited by
-
3-D compressed sensing optical coherence tomography using predictive coding.Biomed Opt Express. 2021 Mar 31;12(4):2531-2549. doi: 10.1364/BOE.421848. eCollection 2021 Apr 1. Biomed Opt Express. 2021. PMID: 33996246 Free PMC article.
-
Quantitative monitoring of laser-treated engineered skin using optical coherence tomography.Biomed Opt Express. 2016 Feb 24;7(3):1030-41. doi: 10.1364/BOE.7.001030. eCollection 2016 Mar 1. Biomed Opt Express. 2016. PMID: 27231605 Free PMC article.
-
Volumetric (3D) compressive sensing spectral domain optical coherence tomography.Biomed Opt Express. 2014 Oct 14;5(11):3921-34. doi: 10.1364/BOE.5.003921. eCollection 2014 Nov 1. Biomed Opt Express. 2014. PMID: 25426320 Free PMC article.
-
Dual-Channel Spectral Domain Optical Coherence Tomography Based on a Single Spectrometer Using Compressive Sensing.Sensors (Basel). 2019 Sep 16;19(18):4006. doi: 10.3390/s19184006. Sensors (Basel). 2019. PMID: 31527515 Free PMC article.
-
Structural and Functional Sensing of Bio-Tissues Based on Compressive Sensing Spectral Domain Optical Coherence Tomography.Sensors (Basel). 2019 Sep 27;19(19):4208. doi: 10.3390/s19194208. Sensors (Basel). 2019. PMID: 31569799 Free PMC article.
References
-
- Donoho D. L., “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).10.1109/TIT.2006.871582 - DOI
-
- Candes E. J., Romberg J., Tao T., “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Inf. Theory 52(2), 489–509 (2006).10.1109/TIT.2005.862083 - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous