Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 30;9(6):e100516.
doi: 10.1371/journal.pone.0100516. eCollection 2014.

The co-inheritance of alpha-thalassemia and sickle cell anemia is associated with better hematological indices and lower consultations rate in Cameroonian patients and could improve their survival

Affiliations

The co-inheritance of alpha-thalassemia and sickle cell anemia is associated with better hematological indices and lower consultations rate in Cameroonian patients and could improve their survival

Maryam Bibi Rumaney et al. PLoS One. .

Abstract

Background: Co-inheritance of α-thalassemia was reported to be associated with a delayed age of disease onset among Cameroonian Sickle Cell Anemia (SCA) patients. The present study aimed to explore the correlation between α-thalassemia, hematological indices, and clinical events in these patients.

Methods and findings: We studied 161 Cameroonian SCA patients and 103 controls (59.1% HbAA) with median ages of 17.5 and 23 years. RFLP-PCR was used to confirm SCA genotype and to describe haplotypes in the HBB-like genes cluster. Multiplex Gap-PCR was performed to investigate the 3.7 kb α-globin gene deletions. SNaPshot PCR, capillary electrophoresis and cycle sequencing were used for the genotyping of 10 SNPs in BCL11A, HMIP1/2, OR51B5/6 and HBG loci, known to influence HbF levels. Generalised linear regression models adjusted for age, sex and SNPs genotypes was used to investigate effects of α-thalassemia on clinical and hematological indices. The median rate of vaso-occlusive painful crisis and hospitalisations was two and one per year, respectively. Stroke was reported in eight cases (7.4%). Benin haplotype was the most prevalent (66.3%; n = 208 chromosomes). Among patients, 37.3% (n = 60) had at least one 3.7 kb deletion, compared to 10.9% (n = 6) among HbAA controls (p<0.001). Among patients, the median RBC count increased with the number of 3.7 kb deletions [2.6, 3.0 and 3.4 million/dl, with no, one and two deletions (p = 0.01)]. The median MCV decreased with the number of 3.7 kb deletion [86, 80, and 68fl, with no, one and two deletions (p<0.0001)], as well as median WBC counts [13.2, 10.5 and 9.8×109/L (p<0.0001. The co-inheritance of α-thalassemia was associated with lower consultations rate (p = 0.038).

Conclusion: The co-inheritance of α-thalassemia and SCA is associated with improved hematological indices, and lower consultations rate in this group of patients. This could possibly improve their survival and explain the higher proportion of α-thalassemia among patients than controls.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Co-inheritance of α-thalassemia among patients and controls.
Panel A displays a much higher prevalence of 3.7α-globin gene deletions among patients compared to unaffected controls [HbAA and HbSS combined (p = 0.003)]. This difference was mostly driven by a much lower proportion of 3.7 kb α-globin gene deletions among HbAA controls. Panel B displays the allele frequencies of the 3.7 kb α-globin gene deletions among patient and control. The frequencies were 22% among patients and 11.8% among controls (HbAS and HbAA combined) (p = 0.006). HbAS controls had more 3.7 kb α-globin gene deletions than HbAA controls (p = 0.02).

References

    1. Bartolucci P, Galactéros F (2012) Clinical management of adult sickle-cell disease. Current Opinion in Hematology 19: 149–55. - PubMed
    1. Williams TN, Mwangi TW, Wambua S, Peto TE, Weatherall DJ, et al. (2005) Negative epistasis between the malaria-protective effects of a+-thalassemia and the sickle cell trait. Nature Genetics 37: 1253–1257. - PMC - PubMed
    1. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, et al. (2013) Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 381: 142–51. - PMC - PubMed
    1. Grosse SD, Odame I, Atrash HK, Amendah DD, Piel FB, et al. (2011) Sickle cell disease in Africa: a neglected cause of early childhood mortality. American Journal of Preventive Medicine 41: S398–405. - PMC - PubMed
    1. Weatherall DJ, Clegg JB (2001) Inherited haemoglobin disorders: an increasing global health problem. Bulletin of the World Health Organization 79: 704–12. - PMC - PubMed

MeSH terms