Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;32(11):2973-82.
doi: 10.1002/stem.1777.

Serotonin enhances megakaryopoiesis and proplatelet formation via p-Erk1/2 and F-actin reorganization

Affiliations

Serotonin enhances megakaryopoiesis and proplatelet formation via p-Erk1/2 and F-actin reorganization

Jie Yu Ye et al. Stem Cells. 2014 Nov.

Abstract

Our previous studies have shown that serotonin (5-hydroxytryptamine; 5-HT) is a growth factor for hematopoietic stem/progenitor cells. In this study, we proposed a possible mechanism: 5-HT may enhance megakaryopoiesis and proplatelet formation via Erk1/2 pathway and cytoskeleton reorganization. Here, 5-HT(2B)R was first identified in megakaryocytic cells. 5-HT also promoted the megakaryocytes (MKs) proliferation and reduced the cell apoptosis via the activation of 5-HT(2B)R and Akt pathway. The effects were reduced by the 5-HT2B R inhibitor ketanserin. The effect of 5-HT on proplatelet formation in bone marrow MKs were further confirmed: the 5-HT treated group had more proplatelet bearing MKs compared with the control group. To determine whether 5-HT has effects on cytoskeleton reorganization of MKs, and whether these effects could be reduced by ketanserin or Erk1/2 inhibitor PD98059, MKs were stained with the F-actin specific binder rhodamine-phalloidin. The polymerized actin level was lower in the control group than the 5-HT group and was distributed throughout the cytoplasm with occasional aggregations. Our data demonstrated that Erk1/2 was activated in MKs treated with 5-HT. This study suggests that 5-HT has a potent effect on platelet formation and this effect is likely mediated via 5HT(2B)R with subsequent activation of p-Erk1/2 and consequent F-actin reorganization and proplatelet formation. We also demonstrated that melatonin, the metabolite of 5-HT, exerts a protective effect on MK and platelet recovery in the irradiated mouse model. This study suggested that 5-HT plays an important role in platelet formation via 5HT(2B)R, p-Erk1/2, and F-actin reorganization.

Keywords: Megakaryopoiesis; Proplatelet; Serotonin; melatonin; p-Erk1/2.

PubMed Disclaimer

Publication types

LinkOut - more resources