Choline transport in Pseudomonas aeruginosa
- PMID: 2498639
- DOI: 10.1007/BF00223517
Choline transport in Pseudomonas aeruginosa
Abstract
Choline used as the sole carbon or carbon and nitrogen source induces in Pseudomonas aeruginosa an active transport system. The induction of the choline uptake is repressed by succinate independently of the presence of ammonium ion in the culture medium. The repression mediated by succinate was insensitive to cyclic AMP. Substitution for dibutyryl-cyclic AMP was without effect. Choline metabolites that also support the growth of Pseudomonas aeruginosa were poor inducer agents of the choline transport. Kinetic evidence and the employment of choline metabolites as effectors indicated that the choline uptake system of this bacterium is formed by at least two components: one of high affinity (Km = 3 microM) and another of low affinity (Km = 400 microM). Contrary to what occurs in the synaptosome system, the high affinity form for the choline uptake was not dependent on Na+ ions and is not inhibited by hemicholinium-3. Since Pseudomonas aeruginosa can utilize choline as the sole carbon and nitrogen source, the induction of the choline transport with two components in this bacterium may be related to its own strategy to survive and grow in an adverse environment.
Similar articles
-
Constitutive choline transport in Pseudomonas aeruginosa.FEMS Microbiol Lett. 1998 May 1;162(1):123-6. doi: 10.1111/j.1574-6968.1998.tb12988.x. FEMS Microbiol Lett. 1998. PMID: 9595672
-
Carbons from choline present in the phospholipids of Pseudomonas aeruginosa.FEMS Microbiol Lett. 1997 Nov 15;156(2):271-4. doi: 10.1111/j.1574-6968.1997.tb12739.x. FEMS Microbiol Lett. 1997. PMID: 9513276
-
Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine.Mol Cell Biochem. 1983;50(2):149-55. doi: 10.1007/BF00285640. Mol Cell Biochem. 1983. PMID: 6406829
-
Choline transport in Fusarium graminearum A 3/5.FEMS Microbiol Lett. 1992 May 1;71(3):247-51. doi: 10.1016/0378-1097(92)90717-3. FEMS Microbiol Lett. 1992. PMID: 1624123
-
Choline derivatives increase two different acid phosphatases in Rhizobium meliloti and Pseudomonas aeruginosa.Arch Microbiol. 1990;153(6):596-9. doi: 10.1007/BF00245271. Arch Microbiol. 1990. PMID: 1695086
Cited by
-
Cellular choline and glycine betaine pools impact osmoprotection and phospholipase C production in Pseudomonas aeruginosa.J Bacteriol. 2012 Sep;194(17):4718-26. doi: 10.1128/JB.00596-12. Epub 2012 Jun 29. J Bacteriol. 2012. PMID: 22753069 Free PMC article.
-
The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae.Infect Immun. 1998 Sep;66(9):4263-7. doi: 10.1128/IAI.66.9.4263-4267.1998. Infect Immun. 1998. PMID: 9712776 Free PMC article.
-
Roles of three transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa choline uptake for catabolism.J Bacteriol. 2011 Jun;193(12):3033-41. doi: 10.1128/JB.00160-11. Epub 2011 Apr 8. J Bacteriol. 2011. PMID: 21478341 Free PMC article.
-
Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1.J Bacteriol. 1997 Aug;179(15):4874-81. doi: 10.1128/jb.179.15.4874-4881.1997. J Bacteriol. 1997. PMID: 9244277 Free PMC article.
-
Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.J Bacteriol. 2008 Apr;190(8):2690-9. doi: 10.1128/JB.01393-07. Epub 2007 Oct 19. J Bacteriol. 2008. PMID: 17951379 Free PMC article.