Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014;125(3):320-8.
doi: 10.1254/jphs.14102fp. Epub 2014 Jul 2.

Neuroprotective effect of 4-methylcyclopentadecanone on focal cerebral ischemia/reperfusion injury in rats

Affiliations
Free article

Neuroprotective effect of 4-methylcyclopentadecanone on focal cerebral ischemia/reperfusion injury in rats

Yukui Ma et al. J Pharmacol Sci. 2014.
Free article

Abstract

The present study aimed to investigate the effect of 4-methylcyclopentadecanone (4-MCPC) on local cerebral ischemia-reperfusion and the possible mechanisms involved. For this purpose, the focal cerebral ischemia rat model was induced by middle cerebral artery occlusion (MCAO) for 2 h, and the rats were treated with 4-MCPC (4 or 8 mg·kg(-1), p.o.) just 0.5 h before reperfusion. The neurological deficit scores and the ischemic infarct volume were recorded 24 h after the MCAO. In addition, the number of apoptotic cells was measured by TUNEL assay, and the expression of apoptosis-regulatory proteins and the PI3K/Akt neuroprotective signaling pathway were investigated by western blotting. Our results indicated that 4-MCPC (4 or 8 mg·kg(-1)) remarkably alleviated cerebral I/R injury by decreasing infarct volume and neurological deficit scores. 4-MCPC also decreased the number of apoptotic cells, regulated the expression of Bcl-2 and Bax, and increased the ratio of Bcl-2/Bax. Further study revealed that 4-MCPC treatment also increased the level of p-Akt and p-GSK-3β. Wortmannin (PI3K inhibitor) markedly abolished the effects of 4-MCPC. Taken together, our results suggest that 4-MCPC protects against cerebral I/R injury through the inhibition of apoptosis, and this neuroprotective effect may be partly related to the activation of the PI3K/Akt signal pathway.

PubMed Disclaimer

Publication types

MeSH terms