Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jun;271(2):488-94.
doi: 10.1016/0003-9861(89)90299-3.

S-adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase from elicitor-treated parsley cell suspension cultures

Affiliations

S-adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase from elicitor-treated parsley cell suspension cultures

A E Pakusch et al. Arch Biochem Biophys. 1989 Jun.

Abstract

An S-adenosyl-L-methionine:caffeoyl-CoA 3-O-methyltransferase was purified 82-fold from elicitor-induced parsley cell suspension cultures by ammonium sulfate fractionation, anionic exchange and hydrophobic interaction chromatographies, and chromatofocusing. The enzyme has an apparent pI of 5.7 and a molecular weight of approx 48,000 determined by gel filtration chromatography. Maximal activity was observed at pH 7.5 in 50 mM phosphate or Tris-HCl buffers and the additional presence of 0.5 M NaCl. The methyltransferase activity was dependent on Mg2+, whereas EDTA, Mn2+, and Ca2+ inhibited the reaction. The partially purified enzyme efficiently catalyzed the methylation of caffeoyl-CoA, but also accepted with low affinity various other caffeic esters as substrates. Dark-grown parsley cells contained considerable methyltransferase activity which was nevertheless increased approx threefold within 12 h following the addition of a crude fungal elicitor to the cell suspensions. We propose that the O-methyltransferase activity is an important component in the rapid resistance response of the cells, which depends on the formation of cell wall-bound ferulic polymers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources