Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Nov;112(5):1201-11.
doi: 10.1016/j.prosdent.2014.05.005. Epub 2014 Jul 1.

Effect of intermediate ZrO2-CaO coatings deposited by cold thermal spraying on the titanium-porcelain bond in dental restorations

Affiliations
Comparative Study

Effect of intermediate ZrO2-CaO coatings deposited by cold thermal spraying on the titanium-porcelain bond in dental restorations

Emanuela Marcelli et al. J Prosthet Dent. 2014 Nov.

Abstract

Statement of problem: Metal ceramic systems are used for the majority of dental crowns and fixed dental prostheses. However, problems with porcelain bonding are encountered when titanium is used as the substrate.

Purpose: The purpose of this study was to evaluate the effect of intermediate calcium oxide-stabilized zirconia (ZrO2-CaO) coatings deposited by cold thermal spraying on the titanium-porcelain bonding in dental restorations.

Material and methods: Two different types of ZrO2-CaO coatings obtained by oxyacetylene cold thermal spraying deposition were applied on commercially pure titanium bars before adding the porcelain layer. Type 1 was obtained by directly spraying the ZrO2-CaO powder on the titanium substrate. Type 2 was obtained by spraying a bond coat of nickel-aluminum-molybdenum alloy before spraying the ZrO2-CaO powder. Three-point bend tests according to International Organization of Standardization 9693-1:2012 were carried out to evaluate the debonding strength for the ZrO2-CaO-coated specimens (types 1 and 2) in comparison with a noncoated group (control), which received a traditional bonder-based adhesive technique. The results were compared with ANOVA, followed by the Student-Newman-Keuls test for pairwise comparisons. Scanning electron microscopy and energy dispersion spectroscopy were used to examine the interfacial properties and the failure mode of each group.

Results: Mean (±standard deviation) debonding strength values for type 1 coating (25.97 ±2.53 MPa) and control (23.51 ±2.94 MPa) were near the acceptable lower limit of 25 MPa indicated by the International Organization of Standardization 9693-1:2012 and were not significantly different (Student-Newman-Keuls test, P>.05). Type 2 coating produced an improved titanium-porcelain bonding (debonding strength=39.47 ±4.12 MPa), significantly higher than both type 1 (Student-Newman-Keuls test, P<.05) and control (Student-Newman-Keuls test, P<.05). Scanning electron microscopy-energy dispersion spectroscopy analysis confirmed these findings, which revealed a predominant cohesive failure mode for type 2.

Conclusions: An intermediate coating layer of ZrO2-CaO plus a substrate of bonding nickel-aluminum-molybdenum alloy applied by oxyacetylene cold thermal spraying deposition provided an improved titanium-porcelain bond.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources