Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct;54(4):677-87.
doi: 10.1093/icb/icu096. Epub 2014 Jul 3.

How a single gene twists a snail

Affiliations

How a single gene twists a snail

Reiko Kuroda. Integr Comp Biol. 2014 Oct.

Abstract

The gastropod Lymnaea has unique features, that is, chirality, sinistrality, or dextrality, is displayed externally as well as internally, and is hereditary, being determined by a single-locus that functions maternally at the very early embryonic stage. Both sinistral and dextral snails exist in nature with the dextral one being dominant. Thus, the genus Lymnaea is an ideal target for studying chiromorphogenesis. This article gives a brief overview of the current state of research on chiromorphogenesis of Lymnaea (L.) stagnalis, mainly focusing on our own studies. Breeding experiments were performed and embryonic development was closely observed for the both chiralities. By fluorescently labeling filamentous actin and microtubules, cytoskeletal dynamics of spiral cleavages for the sinistral and dextral embryos were shown not to be mirror images of each other at the critical third-cleavage. The spiral deformation and spindle inclination were uniquely observed only in the dominant dextral embryos, and they were shown to be strongly linked to the gene determining the direction of chirality. Based on these findings, we created fertile snails of situs inversus by micromanipulation at the third-cleavage. Surprisingly, the arrangement of the blastomere regulates asymmetric expression of nodal-Pitx genes in later development. The expression patterns display interesting similarity and dissimilarity with those of the vertebrates. Thus, study of L. stagnalis has given an insight into "how a single gene twists a snail."

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources