Super liquid-repellent layers: The smaller the better
- PMID: 24996450
- DOI: 10.1016/j.cis.2014.06.002
Super liquid-repellent layers: The smaller the better
Abstract
Super liquid-repellent layers need to have a high impalement pressure and high contact angles, in particular a high apparent receding contact angle. Here, we demonstrate that to achieve both, the features constituting the layer should be as small as possible. Therefore, two models for super liquid-repellent layers are theoretically analyzed: A superhydrophobic layer consisting of an array of cylindrical micropillars and a superamphiphobic layer of an array of pillars of spheres. For the cylindrical micropillars a simple expression for the apparent receding contact angle is derived. It is based on a force balance rather than a thermodynamic approach. The model is supported by confocal microscope images of a water drop on an array of hydrophobic cylindrical pillars. The ratio of the width of a pillar w to the center-to-center spacing a is a primary factor in controlling the receding angle. Keeping the ratio w/a constant, the absolute size of surface features should be as small as possible, to maximize the impalement pressure.
Keywords: Cassie state; Superamphiphobicity; Superhydrophobicity; Superoleophobicity; Wenzel state; Wetting.
Copyright © 2014. Published by Elsevier B.V.
Similar articles
-
Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".Langmuir. 2012 Oct 23;28(42):14925-34. doi: 10.1021/la302765t. Epub 2012 Oct 10. Langmuir. 2012. PMID: 22992132
-
Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.Langmuir. 2009 Dec 15;25(24):14135-45. doi: 10.1021/la902098a. Langmuir. 2009. PMID: 19630435
-
Surfactant solutions and porous substrates: spreading and imbibition.Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007. Adv Colloid Interface Sci. 2004. PMID: 15571660
-
Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.Acc Chem Res. 2010 Mar 16;43(3):368-77. doi: 10.1021/ar900205g. Acc Chem Res. 2010. PMID: 19954162 Review.
-
Superhydrophobicity and liquid repellency of solutions on polypropylene.Adv Colloid Interface Sci. 2012 Jul 15;175:1-10. doi: 10.1016/j.cis.2012.03.003. Epub 2012 Mar 17. Adv Colloid Interface Sci. 2012. PMID: 22483352 Review.
Cited by
-
Premelting-Induced Agglomeration of Hydrates: Theoretical Analysis and Modeling.ACS Appl Mater Interfaces. 2020 Mar 25;12(12):14599-14606. doi: 10.1021/acsami.0c00636. Epub 2020 Mar 13. ACS Appl Mater Interfaces. 2020. PMID: 32125147 Free PMC article.
-
Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning.ACS Nano. 2020 Apr 28;14(4):3836-3846. doi: 10.1021/acsnano.9b08211. Epub 2020 Feb 28. ACS Nano. 2020. PMID: 32096971 Free PMC article.
-
Salvinia-like slippery surface with stable and mobile water/air contact line.Natl Sci Rev. 2020 Jul 2;8(5):nwaa153. doi: 10.1093/nsr/nwaa153. eCollection 2021 May. Natl Sci Rev. 2020. PMID: 34691630 Free PMC article.
-
Morphology of Evaporating Sessile Microdroplets on Lyophilic Elliptical Patches.Langmuir. 2019 Feb 12;35(6):2099-2105. doi: 10.1021/acs.langmuir.8b03393. Epub 2019 Feb 4. Langmuir. 2019. PMID: 30624944 Free PMC article.
-
Spontaneous recovery of superhydrophobicity on nanotextured surfaces.Proc Natl Acad Sci U S A. 2016 May 17;113(20):5508-13. doi: 10.1073/pnas.1521753113. Epub 2016 May 2. Proc Natl Acad Sci U S A. 2016. PMID: 27140619 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources