Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jun;212(2):193-211.
doi: 10.1016/0027-5107(89)90071-7.

Importance of multiple hydroxylated metabolites in hexamethylphosphoramide (HMPA)-mediated mutagenesis in Drosophila melanogaster

Affiliations

Importance of multiple hydroxylated metabolites in hexamethylphosphoramide (HMPA)-mediated mutagenesis in Drosophila melanogaster

J A Zijlstra et al. Mutat Res. 1989 Jun.

Abstract

The mutagenic profiles in Drosophila and the influence of inhibition of metabolism on genotoxic activity were determined for hexamethylphosphoric triamide (HMPA), some synthetically prepared presumed metabolites and ethylated analogs. Demethylated HMPA metabolites are considerably less mutagenic than HMPA, dependent on the degree of demethylation. The mutagenicity of the presumptive primary metabolite, hydroxymethyl pentamethylphosphoramide (HM-Me5-PA), is comparable to HMPA and can be decreased considerably by inhibition of the metabolism by 1-phenylimidazole or iproniazid. This suggests that further oxidative metabolism is required for mutagenic activity. The mutagenicity of the doubly hydroxylated HMPA metabolite, N,N'-bis(hydroxymethyl)-tetramethylphosphoramide (N,N'-(HM)2-Me4-PA) can also be decreased by inhibition of metabolism, whereas the 3-fold hydroxylated N,N',-N"-(HM)3-Me3-PA is not affected by pretreatment with enzyme inhibitors, indicating that no further oxidative metabolism is required for its activation. A second hydroxylation on 1 dimethylamino group, forming N,N-(HM)2-Me4-PA, results in a drastic loss of mutagenic activity. Further oxidation of HM-Me5-PA to formyl pentamethylphosphoramide (formyl-Me5-PA) also leads to a strong reduction of the genotoxic activity. The rearrangement product of N-oxidation, N-[bis(dimethylamino)phosphinyl)-oxy)dimethylamine (HMPOA) is not mutagenic in Drosophila. The very low mutagenicity of hexaethylphosphoramide (Et6-PA) allowed us to study the mutagenicity of some ethyl-hydroxymethyl hybrid compounds. For the ethylated phosphoramides also the presence of only 1 hydroxymethyl group is insufficient for mutagenic activity, whereas the introduction of 2 or 3 hydroxymethyl groups resulted in considerable genotoxicity in the sex-linked recessive lethal (SLRL) test as well as in the ring-X loss test. It is concluded that the bioactivation of HMPA in Drosophila proceeds via multiple metabolic hydroxylations to form multifunctional, cross-linking agents. The presence of an oxygen atom on the phosphorus appears to be a prerequisite for the genotoxic activity of HMPA as hexamethylphosphorus triamide (HMPT), a derivative lacking this oxygen, is only weakly mutagenic in Drosophila. The results presented in this paper do not support the theory that formaldehyde is the active principle of activated HMPA.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources