Mechanism and inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase
- PMID: 24998420
- DOI: 10.1016/j.bioorg.2014.06.001
Mechanism and inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase
Abstract
The non-mevalonate or 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is responsible for generating isoprenoid precursors in plants, protozoa, and bacteria. Because this pathway is absent in humans, its enzymes represent potential targets for the development of herbicides and antibiotics. 1-Deoxy-d-xylulose (DXP) reductoisomerase (DXR) is a particularly attractive target that catalyzes the pathway's first committed step: the sequential isomerization and NADPH-dependent reduction of DXP to MEP. This article provides a comprehensive review of the mechanistic and structural investigations on DXR, including its discovery and validation as a drug target, elucidation of its chemical and kinetic mechanisms, characterization of inhibition by the natural antibiotic fosmidomycin, and identification of structural features that provide the molecular basis for inhibition of and catalysis.
Keywords: 1-Deoxy-d-xylulose 5-phosphate (DXP); DXR; Enzyme mechanism; Fosmidomycin; Kinetic mechanism; Malaria; Reductoisomerase; Tuberculosis.
Copyright © 2014 Elsevier Inc. All rights reserved.
Similar articles
-
1-Deoxy-D-xylulose 5-phosphate reductoisomerase: an overview.Bioorg Chem. 2004 Dec;32(6):483-93. doi: 10.1016/j.bioorg.2004.08.004. Bioorg Chem. 2004. PMID: 15530989 Review.
-
Targeting the methyl erythritol phosphate (MEP) pathway for novel antimalarial, antibacterial and herbicidal drug discovery: inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) enzyme.Curr Pharm Des. 2007;13(11):1161-77. doi: 10.2174/138161207780618939. Curr Pharm Des. 2007. PMID: 17430177 Review.
-
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin.J Bacteriol. 2005 Dec;187(24):8395-402. doi: 10.1128/JB.187.24.8395-8402.2005. J Bacteriol. 2005. PMID: 16321944 Free PMC article.
-
A high-throughput screening assay for simultaneous selection of inhibitors of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate synthase (Dxs) or 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr).J Biomol Screen. 2011 Mar;16(3):303-12. doi: 10.1177/1087057110394845. Epub 2011 Feb 18. J Biomol Screen. 2011. PMID: 21335601
-
Structures of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase provide new insights into catalysis.J Biol Chem. 2007 Jul 6;282(27):19905-16. doi: 10.1074/jbc.M701935200. Epub 2007 May 9. J Biol Chem. 2007. PMID: 17491006
Cited by
-
Targeting Metalloenzymes for Therapeutic Intervention.Chem Rev. 2019 Jan 23;119(2):1323-1455. doi: 10.1021/acs.chemrev.8b00201. Epub 2018 Sep 7. Chem Rev. 2019. PMID: 30192523 Free PMC article. Review.
-
Exploration of potential hit compounds targeting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) from Acinetobacter baumannii: an in silico investigation.3 Biotech. 2024 Mar;14(3):72. doi: 10.1007/s13205-024-03923-w. Epub 2024 Feb 13. 3 Biotech. 2024. PMID: 38362590 Free PMC article.
-
Developing an alternative medium for in-space biomanufacturing.Nat Commun. 2025 Jan 16;16(1):728. doi: 10.1038/s41467-025-56088-2. Nat Commun. 2025. PMID: 39819985 Free PMC article.
-
Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.Biotechnol Biofuels. 2016 Sep 22;9:202. doi: 10.1186/s13068-016-0617-8. eCollection 2016. Biotechnol Biofuels. 2016. PMID: 27688805 Free PMC article.
-
Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics.Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2409747121. doi: 10.1073/pnas.2409747121. Epub 2024 Oct 28. Proc Natl Acad Sci U S A. 2024. PMID: 39467118 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical