Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jul;12(3):178-201.
doi: 10.1016/j.jtos.2014.01.004. Epub 2014 Apr 16.

Interfacial phenomena and the ocular surface

Affiliations
Free article
Review

Interfacial phenomena and the ocular surface

Bernardo Yañez-Soto et al. Ocul Surf. 2014 Jul.
Free article

Abstract

Ocular surface disorders, such as dry eye disease, ocular rosacea, and allergic conjunctivitis, are a heterogeneous group of diseases that require an interdisciplinary approach to establish underlying causes and develop effective therapeutic strategies. These diverse disorders share a common thread in that they involve direct changes in ocular surface chemistry as well as the rheological properties of the tear film and topographical attributes of the cellular elements of the ocular surface. Knowledge of these properties is crucial to understand the formation and stability of the preocular tear film. The study of interfacial phenomena of the ocular surface flourished during the 1970s and 1980s, but after a series of lively debates in the literature concerning distinctions between the epithelial and the glandular origin of ocular surface disorders during the 1990s, research into this important topic has declined. In the meantime, new tools and techniques for the characterization and functionalization of biological surfaces have been developed. This review summarizes the available literature regarding the physicochemical attributes of the ocular surface, analyzes the role of interfacial phenomena in the pathobiology of ocular surface disease, identifies critical knowledge gaps concerning interfacial phenomena of the ocular surface, and discusses the opportunities for the exploitation of these phenomena to develop improved therapeutics for the treatment of ocular surface disorders.

Keywords: dry eye disease; evaporation; glycocalyx; interfacial phenomena; microvilli; mucins; rheology; surface energy; tear film; tear film lipid layer.

PubMed Disclaimer