Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 21;16(31):16701-10.
doi: 10.1039/c3cp55440f.

Graphene-based electrodes for enhanced organic thin film transistors based on pentacene

Affiliations

Graphene-based electrodes for enhanced organic thin film transistors based on pentacene

Sarbani Basu et al. Phys Chem Chem Phys. .

Abstract

This paper presents 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and pentacene-based organic thin film transistors (OTFTs) with monolayer graphene source-drain (S-D) electrodes. The electrodes are patterned using conventional photolithographic techniques combined with reactive ion etching. The monolayer graphene film grown by chemical vapor deposition on Cu foil was transferred on a Si dioxide surface using a polymer-supported transfer method to fabricate bottom-gate, bottom-contact OTFTs. The pentacene OTFTs with graphene S-D contacts exhibited superior performance with a mobility of 0.1 cm(2) V(-1) s(-1) and an on-off ratio of 10(5) compared with OTFTs with Au-based S-D contacts, which had a mobility of 0.01 cm(2) V(-1) s(-1) and an on-off ratio of 10(3). The crystallinity, grain size, and microscopic defects (or the number of layers of graphene films) of the TIPS-pentacene/pentacene films were analyzed by X-ray diffraction spectroscopy, atomic force microscopy, and Raman spectroscopy, respectively. The feasibility of using graphene as an S-D electrode in OTFTs provides an alternative material with high carrier injection efficiency, chemical stability, and excellent interface properties with organic semiconductors, thus exhibiting improved device performance of C-based electronic OTFTs at a reduced cost.

PubMed Disclaimer

LinkOut - more resources