Metal-free trifluoromethylation of aromatic and heteroaromatic aldehydes and ketones
- PMID: 25001876
- PMCID: PMC4120972
- DOI: 10.1021/jo501289v
Metal-free trifluoromethylation of aromatic and heteroaromatic aldehydes and ketones
Abstract
The ability to convert simple and common substrates into fluoroalkyl derivatives under mild conditions remains an important goal for medicinal and agricultural chemists. One representative example of a desirable transformation involves the conversion of aromatic and heteroaromatic ketones and aldehydes into aryl and heteroaryl β,β,β-trifluoroethylarenes and -heteroarenes. The traditional approach for this net transformation involves stoichiometric metals and/or multistep reaction sequences that consume excessive time, material, and labor resources while providing low yields of products. To complement these traditional strategies, we report a one-pot metal-free decarboxylative procedure for accessing β,β,β-trifluoroethylarenes and -heteroarenes from readily available ketones and aldehydes. This method features several benefits, including ease of operation, readily available reagents, mild reaction conditions, high functional-group compatibility, and scalability.
Figures
References
-
-
For books see:
- Kirsch P.Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, Germany, 2004.
- Uneyama K.Organofluorine Chemistry; Blackwell: Oxford, U.K., 2006.
- Tressaud A.Fluorine and the Environment: Agrochemicals, Archaeology, Green Chemistry & Water; Elsevier: Amsterdam, 2006.
- Bégué J.-P.; Bonnet-Delpon D.. Bioorganic and Medicinal Chemistry of Fluorine; John Wiley & Sons, Inc.: Hoboken, NJ, 2008.
- Ojima I.Fluorine in Medicinal Chemistry and Chemical Biology; John Wiley & Sons, Ltd.: West Sussex, U.K., 2009.
-
-
- Muller K.; Faeh C.; Diederich F. Science 2007, 317, 1881–1886. - PubMed
- Prakash G. K. S.; Hu J. Acc. Chem. Res. 2007, 40, 921–930. - PubMed
- Kirk K. L. Org. Process Res. Dev. 2008, 12, 305–321.
- Ma J.-A.; Cahard D. Chem. Rev. 2008, 108, PR1–PR43. - PubMed
- Undgren R. J.; Stradiotto M. Angew. Chem., Int. Ed. 2010, 49, 9322–9324. - PubMed
- Furuya T.; Kamlet A. S.; Ritter T. Nature 2011, 473, 470–477. - PMC - PubMed
- Tomashenko O. A.; Grushin V. V. Chem. Rev. 2011, 111, 4475–4521. - PubMed
- Liu G. Org. Biomol. Chem. 2012, 10, 6243–6248. - PubMed
- Hollingworth C.; Gouverneur V. Chem. Commun. 2012, 48, 2929–2942. - PubMed
- Wu X. F.; Neumann H.; Beller M. Chem.—Asian J. 2012, 7, 1744–1754. - PubMed
- Liu T.; Shen Q. Eur. J. Org. Chem. 2012, 6679–6687.
- Besset T.; Schneider C.; Cahard D. Angew. Chem., Int. Ed. 2012, 51, 5048–5050. - PubMed
- Liang T.; Neumann C. N.; Ritter T. Angew. Chem. 2013, 125, 8372–8423. - PubMed
- Liang T.; Neumann C. N.; Ritter T. Angew. Chem., Int. Ed. 2013, 52, 8214–8264. - PubMed
- Prier C. K.; Rankic D. A.; MacMillan D. W. C. Chem. Rev. 2013, 113, 5322–5363. - PMC - PubMed
- Qiao Y.; Zhu L.; Ambler B.; Altman R. A. Curr. Top. Med. Chem. 2014, 14, 966–978. - PMC - PubMed
-
- Roy S.; Gregg B. T.; Gribble G. W.; Le V.-D.; Roy S. Tetrahedron 2011, 67, 2161–2195.
- Chu L.; Qing F.-L. Acc. Chem. Res. 2014, 47, 1513–1522. - PubMed
- Liu H.; Gu Z.; Jiang X. Adv. Synth. Catal. 2013, 355, 617–626.
- Chen P.; Liu G. Synthesis 2013, 45, 2919–2939.
- Grushin V. V. Acc. Chem. Res. 2010, 43, 160–171. - PubMed
-
-
A SciFinder search conducted in March 2014 revealed over 21,000 β,β,β-trifluoroethylarenes and -heteroarenes that possessed a biological study.
-
-
- Ruppert I.; Schlich K.; Volbach W. Tetrahedron Lett. 1984, 24, 2195–2198.
- Prakash G. K. S.; Krishnamurti R.; Olah G. A. J. Am. Chem. Soc. 1989, 111, 393–395.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
