Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules
- PMID: 25001884
- DOI: 10.1038/ncomms5302
Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules
Abstract
A large number of inorganic materials form crystals with chiral symmetry groups. Enantioselectively synthesizing nanostructures of such materials should lead to interesting optical activity effects. Here we report the synthesis of colloidal tellurium and selenium nanostructures using thiolated chiral biomolecules. The synthesis conditions are tuned to obtain tellurium nanostructures with chiral shapes and large optical activity. These nanostructures exhibit visible optical and chiroptical responses that shift with size and are successfully simulated by an electromagnetic model. The model shows that they behave as chiral optical resonators. The chiral tellurium nanostructures are transformed into chiral gold and silver telluride nanostructures with very large chiroptical activity, demonstrating a simple colloidal chemistry path to chiral plasmonic and semiconductor metamaterials. These materials are natural candidates for studies related to interactions of chiral (bio)molecules with chiral inorganic surfaces, with relevance to asymmetric catalysis, chiral crystallization and the evolution of homochirality in biomolecules.
Similar articles
-
Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.Chem Soc Rev. 2013 Aug 21;42(16):7028-41. doi: 10.1039/c3cs60139k. Chem Soc Rev. 2013. PMID: 23788027 Review.
-
Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.Nature. 2018 Apr;556(7701):360-365. doi: 10.1038/s41586-018-0034-1. Epub 2018 Apr 18. Nature. 2018. PMID: 29670265
-
Enantioselective Crystallization of Chiral Inorganic Crystals of ϵ-Zn(OH)2 with Amino Acids.Angew Chem Int Ed Engl. 2020 Nov 16;59(47):20924-20929. doi: 10.1002/anie.202009061. Epub 2020 Sep 9. Angew Chem Int Ed Engl. 2020. PMID: 32776435
-
Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.Adv Mater. 2013 May 14;25(18):2517-34. doi: 10.1002/adma.201205178. Epub 2013 Apr 2. Adv Mater. 2013. PMID: 23553650 Review.
-
Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.Annu Rev Phys Chem. 2019 Jun 14;70:275-299. doi: 10.1146/annurev-physchem-050317-021332. Epub 2019 May 21. Annu Rev Phys Chem. 2019. PMID: 31112458 Review.
Cited by
-
Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.Nat Commun. 2015 Sep 22;6:8379. doi: 10.1038/ncomms9379. Nat Commun. 2015. PMID: 26391292 Free PMC article.
-
Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy.Nano Lett. 2016 Dec 14;16(12):7467-7473. doi: 10.1021/acs.nanolett.6b03143. Epub 2016 Nov 30. Nano Lett. 2016. PMID: 27960517 Free PMC article.
-
Circularly Polarized Light-Enabled Chiral Nanomaterials: From Fabrication to Application.Nanomicro Lett. 2023 Jan 18;15(1):39. doi: 10.1007/s40820-022-01005-1. Nanomicro Lett. 2023. PMID: 36652114 Free PMC article. Review.
-
Progress in the Synthesis and Application of Tellurium Nanomaterials.Nanomaterials (Basel). 2023 Jul 12;13(14):2057. doi: 10.3390/nano13142057. Nanomaterials (Basel). 2023. PMID: 37513066 Free PMC article. Review.
-
Non-spherical gold nanoparticles enhanced fluorescence of carbon dots for norovirus-like particles detection.J Biol Eng. 2023 Apr 27;17(1):33. doi: 10.1186/s13036-023-00351-x. J Biol Eng. 2023. PMID: 37106392 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources