Treadmill training increases SIRT-1 and PGC-1 α protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manner
- PMID: 25002755
- PMCID: PMC4070581
- DOI: 10.1155/2014/987017
Treadmill training increases SIRT-1 and PGC-1 α protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manner
Retraction in
-
Retracted: Treadmill Training Increases SIRT-1 and PGC-1α Protein Levels and AMPK Phosphorylation in Quadriceps of Middle-Aged Rats in an Intensity-Dependent Manner.Mediators Inflamm. 2017;2017:8287646. doi: 10.1155/2017/8287646. Epub 2017 Oct 16. Mediators Inflamm. 2017. PMID: 29123335 Free PMC article.
Abstract
The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 β , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.
Figures
References
-
- Hütter E, Skovbro M, Lener B, et al. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell. 2007;6(2):245–256. - PubMed
-
- Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell. 2008;7(1):2–12. - PubMed
-
- Picard M, Ritchie D, Wright KJ, et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell. 2010;9(6):1032–1046. - PubMed
-
- Picard M, Ritchie D, Thomas MM, Wright KJ, Hepple RT. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles. Aging Cell. 2011;10(6):1047–1055. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
