Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;33(7):1123-31.
doi: 10.1377/hlthaff.2014.0041.

Big data in health care: using analytics to identify and manage high-risk and high-cost patients

Affiliations

Big data in health care: using analytics to identify and manage high-risk and high-cost patients

David W Bates et al. Health Aff (Millwood). 2014 Jul.

Abstract

The US health care system is rapidly adopting electronic health records, which will dramatically increase the quantity of clinical data that are available electronically. Simultaneously, rapid progress has been made in clinical analytics--techniques for analyzing large quantities of data and gleaning new insights from that analysis--which is part of what is known as big data. As a result, there are unprecedented opportunities to use big data to reduce the costs of health care in the United States. We present six use cases--that is, key examples--where some of the clearest opportunities exist to reduce costs through the use of big data: high-cost patients, readmissions, triage, decompensation (when a patient's condition worsens), adverse events, and treatment optimization for diseases affecting multiple organ systems. We discuss the types of insights that are likely to emerge from clinical analytics, the types of data needed to obtain such insights, and the infrastructure--analytics, algorithms, registries, assessment scores, monitoring devices, and so forth--that organizations will need to perform the necessary analyses and to implement changes that will improve care while reducing costs. Our findings have policy implications for regulatory oversight, ways to address privacy concerns, and the support of research on analytics.

Keywords: Cost of Health Care; Information Technology; Quality Of Care.

PubMed Disclaimer

Publication types