Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Feb;40(2):308-16.
doi: 10.1007/s11064-014-1377-0. Epub 2014 Jul 10.

PPARγ and PGC-1α as therapeutic targets in Parkinson's

Affiliations
Review

PPARγ and PGC-1α as therapeutic targets in Parkinson's

Juan Carlos Corona et al. Neurochem Res. 2015 Feb.

Abstract

The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPARγ was initially identified through its role in the regulation of glucose and lipid metabolism and cell differentiation. It also influences the expression or activity of a number of genes in a variety of signalling networks. These include regulation of redox balance, fatty acid oxidation, immune responses and mitochondrial function. Recent studies suggest that the PPARγ agonists may serve as good candidates for the treatment of several neurodegenerative disorders including Parkinson's disease (PD), Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis, even though multiple etiological factors contribute to the development of these disorders. Recent reports have also signposted a role for PPARγ coactivator-1α (PGC-1α) in several neurodegenerative disorders including PD. In this review, we explore the current knowledge of mechanisms underlying the beneficial effects of PPARγ agonists and PGC-1α in models of PD.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Pathways involved in neuroprotection by PPARγ and PGC-1α in PD. Mitochondrial dysfunction, oxidative stress, proteosomal dysfunction, neuroinflammation, autophagy and apoptosis are all implicated in the pathogenesis of PD. Environmental factors and toxins (rotenone, MPTP, MPP+ and 6-OHDA) directly induce both oxidative stress and mitochondrial dysfunction. Different toxins increase oxidative stress (ROS) and cause mitochondrial dysfunction, both increase [Ca2+], decrease ATP, decrease mitochondrial membrane potential, decrease oxygen consumption and cause failure in autophagy, proteosomal dysfunction and abnormal protein aggregation which ultimately lead to neuronal death. Activated microglia release inflammatory cytokines and increase ROS, driving neuronal degeneration. DJ-1 and PARKIN mutations cause aggregation of α-synuclein and PARKIN/PINK-1 mutations cause failure in autophagy. Mutations in the PARKIN gene cause protein misfolding. Mutations in PARKIN also increase expression of the PARIS, thereby repressing the expression of PGC-1α. PPARγ agonists inhibit microglial activation and reduce inflammation by decreasing expression of cytokines, TNF-α, COX2 and iNOS. PPARγ agonists reduced apoptosis by inhibition of BAX, IL2, IL1β and by increasing Bcl-2 expression. PPARγ agonists increase antioxidant defences, mitochondrial biogenesis, oxygen consumption, mitochondrial membrane potential, autophagy, PGC-1α and other transcription factors. Moreover, PGC-1α induces the expression of downstream target genes involved in mitochondrial biogenesis, transcription factors and antioxidant defences. Thus, PGC-1α and PPARγ agonists regulate the expression of several target genes involved in neuronal survival and neuroprotection by inhibiting mitochondrial dysfunction, oxidative stress, proteosomal dysfunction, autophagy, neuroinflammation and apoptosis

References

    1. Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol. 2001;169(3):453–459. doi: 10.1677/joe.0.1690453. - DOI - PubMed
    1. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20(5):649–688. - PubMed
    1. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O’Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58(4):726–741. doi: 10.1124/pr.58.4.5. - DOI - PubMed
    1. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355–361. doi: 10.1038/nm1025. - DOI - PubMed
    1. Qi C, Zhu Y, Reddy JK. Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys. 2000;32:187–204. doi: 10.1385/CBB:32:1-3:187. - DOI - PubMed

Publication types

MeSH terms

Substances