Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus
- PMID: 25027087
- PMCID: PMC4140042
Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus
Abstract
Background & objectives: The susceptibility of the mosquito to the invading pathogen is predominantly dictated by the complex interactions between the mosquito midgut and the surface proteins of the invading pathogen. It is well documented that the midgut microbiota plays an important role in determining the susceptibility of the mosquito to the pathogen. In the present study, we investigated the influence of Serratia odorifera, an endogenous cultivable midgut inhabitant of Aedes aegypti on the chikungunya virus (CHIKV) susceptibility to this mosquito.
Methods: Ae. aegypti females free of gutflora were co-fed with CHIKV and either of the two midgut inhabitants namely, S. odorifeara and Microbacterium oxydans. CHIKV dissemination was checked on 10 th day post feeding (DPF) using indirect immunoflurescence assay and plaque assay. CHIKV interacting proteins of the mosquito midgut were identified using virus overlay protein binding assay and MALDI TOF/TOF analysis.
Results: The observations revealed that co-feeding of S. odorifera with CHIKV significantly enhanced the CHIKV susceptibility in adult Ae. aegypti, as compared to the mosquitoes fed with CHIKV alone and CHIKV co-fed with another midgut inhabitant, M. oxydans. Virus overlay protein binding assay (VOPBA) results revealed that porin and heat shock protein (HSP60) of Ae. aegypti midgut brush border membrane fraction interacted with CHIKV.
Interpretation & conclusions: The results of this study indicated that the enhancement in the CHIKV susceptibility of Ae. aegypti females was due to the suppression of immune response of Ae. aegypti as a result of the interaction between S. odorifera P40 protein and porin on the gut membrane.
Figures


References
-
- Dillon RJ, Vennard CT, Buckling A, Charnley AK. Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett. 2005;8:1291–8.
-
- Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM, Jadhav SM, et al. Genetic divergence of Chikungunya viruses in India (1963-2006) with special reference to the 2005-2006 explosive epidemic. J Gen Virol. 2007;88:1967–76. - PubMed
-
- Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol. 2007;88:2363–77. - PubMed
-
- Mourya DT, Pidiyar V, Patole M, Gokhale MD, Shouche Y. Effect of midgut bacterial flora of Aedes aegypti on the susceptibility of mosquitoes to dengue viruses. Dengue Bull. 2002;26:190–4. - PubMed
-
- Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous