Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 16;312(3):269-77.
doi: 10.1001/jama.2014.8165.

Time elapsed after ischemic stroke and risk of adverse cardiovascular events and mortality following elective noncardiac surgery

Affiliations

Time elapsed after ischemic stroke and risk of adverse cardiovascular events and mortality following elective noncardiac surgery

Mads E Jørgensen et al. JAMA. .

Abstract

Importance: The timing of surgery in patients with recent ischemic stroke is an important and inadequately addressed issue.

Objective: To assess the safety and importance of time elapsed between stroke and surgery in the risk of perioperative cardiovascular events and mortality.

Design, setting, and participants: Danish nationwide cohort study (2005-2011) including all patients aged 20 years or older undergoing elective noncardiac surgeries (n=481,183 surgeries).

Exposures: Time elapsed between stroke and surgery in categories and as a continuous measure.

Main outcomes and measures: Risk of major adverse cardiovascular events (MACE; including ischemic stroke, acute myocardial infarction, and cardiovascular mortality) and all-cause mortality up to 30 days after surgery. Odds ratios (ORs) were calculated by multivariable logistic regression models.

Results: Crude incidence rates of MACE among patients with (n = 7137) and without (n = 474,046) prior stroke were 54.4 (95% CI, 49.1-59.9) vs 4.1 (95% CI, 3.9-4.2) per 1000 patients. Compared with patients without stroke, ORs for MACE were 14.23 (95% CI, 11.61-17.45) for stroke less than 3 months prior to surgery, 4.85 (95% CI, 3.32-7.08) for stroke 3 to less than 6 months prior, 3.04 (95% CI, 2.13-4.34) for stroke 6 to less than 12 months prior, and 2.47 (95% CI, 2.07-2.95) for stroke 12 months or more prior. MACE risks were at least as high for low-risk (OR, 9.96; 95% CI, 5.49-18.07 for stroke <3 months) and intermediate-risk (OR, 17.12; 95% CI, 13.68-21.42 for stroke <3 months) surgery compared with high-risk surgery (OR, 2.97; 95% CI, 0.98-9.01 for stroke <3 months) (P = .003 for interaction). Similar patterns were found for 30-day mortality: ORs were 3.07 (95% CI, 2.30-4.09) for stroke less than 3 months prior, 1.97 (95% CI, 1.22-3.19) for stroke 3 to less than 6 months prior, 1.45 (95% CI, 0.95-2.20) for stroke 6 to less than 12 months prior, and 1.46 (95% CI, 1.21-1.77) for stroke 12 months or more prior to surgery compared with patients without stroke. Cubic regression splines performed on the stroke subgroup supported that risk leveled off after 9 months.

Conclusions and relevance: A history of stroke was associated with adverse outcomes following surgery, in particular if time between stroke and surgery was less than 9 months. After 9 months, the associated risk appeared stable yet still increased compared with patients with no stroke. The time dependency of risk may warrant attention in future guidelines.

PubMed Disclaimer

Comment in

Publication types