Inactivation of TRPM7 kinase activity does not impair its channel function in mice
- PMID: 25030553
- PMCID: PMC4101474
- DOI: 10.1038/srep05718
Inactivation of TRPM7 kinase activity does not impair its channel function in mice
Abstract
Transient receptor potential (TRP) family channels are involved in sensory pathways and respond to various environmental stimuli. Among the members of this family, TRPM7 is a unique fusion of an ion channel and a C-terminus kinase domain that is highly expressed in immune cells. TRPM7 serves as a key molecule governing cellular Mg(2+) homeostasis in mammals since its channel pore is permeable to Mg(2+) ions and can act as a Mg(2+) influx pathway. However, mechanistic links between its kinase activity and channel function have remained uncertain. In this study, we generated kinase inactive knock-in mutant mice by mutagenesis of a key lysine residue involved in Mg(2+)-ATP binding. These mutant mice were normal in development and general locomotor activity. In peritoneal macrophages isolated from adult animals the basal activity of TRPM7 channels prior to cytoplasmic Mg(2+) depletion was significantly potentiated, while maximal current densities measured after Mg(2+) depletion were unchanged in the absence of detectable kinase function. Serum total Ca(2+) and Mg(2+) levels were not significantly altered in kinase-inactive mutant mice. Our findings suggest that abolishing TRPM7 kinase activity does not impair its channel activity and kinase activity is not essential for regulation of mammalian Mg(2+) homeostasis.
Figures




References
-
- Nadler M. J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001). - PubMed
-
- Schlingmann K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170 (2002). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous