Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2014 May 1;18(3):137.
doi: 10.1186/cc13853.

Deeper understanding of mechanisms contributing to sepsis-induced myocardial dysfunction

Comment

Deeper understanding of mechanisms contributing to sepsis-induced myocardial dysfunction

Keith R Walley. Crit Care. .

Abstract

The inflammatory response of sepsis results in organ dysfunction, including myocardial dysfunction. Myocardial dysfunction is particularly important in patients with severe septic shock who progress to a hypodynamic pre-terminal phase. Multiple aspects of this septic inflammatory response contribute to the pathogenesis of decreased ventricular contractility. Inflammatory cytokines released by inflammatory cells contribute as does nitric oxide released by vascular endothelium and by cardiomyocytes. Endotoxins and other pathogen molecules induce an intramyocardial inflammatory response by binding Toll-like receptors on cardiomyocytes that then signal via NF-κB. These processes alter cardiomyocyte depolarization and, therefore, contractility. The particular role of the cardiomyocyte sodium current has not been characterized. Now new information suggests that the septic inflammatory response impairs normal depolarization by altering the cardiomyocyte sodium current. This results in decreased ventricular contractility. This is important because new targets for therapeutic intervention can be considered and new approaches to evaluation of this problem can be contemplated.

PubMed Disclaimer

Comment on

References

    1. Koesters A, Engisch KL, Rich MM. Decreased cardiac excitability secondary to reduction of sodium current may be a significant contributor to reduced contractility in a rat model of sepsis. Crit Care. 2014;18:R54. doi: 10.1186/cc13800. - DOI - PMC - PubMed
    1. Charpentier J, Luyt CE, Fulla Y, Vinsonneau C, Cariou A, Grabar S, Dhainaut JF, Mira JP, Chiche JD. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med. 2004;32:660–665. doi: 10.1097/01.CCM.0000114827.93410.D8. - DOI - PubMed
    1. Maeder M, Fehr T, Rickli H, Ammann P. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest. 2006;129:1349–1366. doi: 10.1378/chest.129.5.1349. - DOI - PubMed
    1. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res. 2006;72:384–393. doi: 10.1016/j.cardiores.2006.09.011. - DOI - PubMed
    1. Li X, Luo R, Chen R, Song L, Zhang S, Hua W, Chen H. Cleavage of IkappaBalpha by calpain induces myocardial NF-kappaB activation, TNF-alpha expression, and cardiac dysfunction in septic mice. Am J Physiol Heart Circ Physiol. 2014;306:H833–H843. doi: 10.1152/ajpheart.00893.2012. - DOI - PubMed

Substances