Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 17;9(7):e102679.
doi: 10.1371/journal.pone.0102679. eCollection 2014.

Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system

Affiliations

Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system

Julianne L Baron et al. PLoS One. .

Abstract

Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Comparison of the number of OTUs (97% similarity) for each month.
Bars represent standard deviation. Each sample pool was normalized to 7,000 sequences. Samples from B3 and B0 represent those taken three months and immediately prior to monochloramine treatment, respectively. Samples from M1, M2, M3, M4, M5, and M6 were taken monthly during the first six months of treatment.
Figure 2
Figure 2. PCoA analysis of samples pools.
Samples that cluster more closely together share a greater similarity in microbial community structure. Colors represent months sampled whereas shapes represent sample pool. Samples from B3 and B0 represent those taken three months and immediately prior to monochloramine treatment, respectively. Samples from M1, M2, M3, M4, M5, and M6 were taken monthly during the first six months of treatment.
Figure 3
Figure 3. Taxonomic assignments of sequences from HWT (hot water tank samples) (Panel A), F3 (floors 3–5) (Panel B), F6A (floors 6 and 7 automatic faucets) (Panel C), F6S (floors 6 and 7 standard faucets) (Panel D), F8 (floors 8–12) and F8rep (replicate barcoded PCRs of samples from floors 8–12) (Panel E).
Samples from B3 and B0 represent those taken three months and immediately prior to monochloramine treatment, respectively. Samples from M1, M2, M3, M4, M5, and M6 were taken monthly during the first six months of treatment. Black lines in Panel E separate pairs of replicates.
Figure 4
Figure 4. Relative abundance of different genera of opportunistic waterborne pathogens.
Samples color coded into four groupings calculated by 25% of the maximum relative abundance for each organism. Months with the least relative abundance are lightest in color, whereas months with the highest relative abundance are darkest. *denotes a statistically significant increase in the relative abundance of this organism following treatment.
Figure 5
Figure 5. Relative abundance of genera containing nitrifying (Nitrospira and Nitrosomonadacea) and denitrifying bacteria (Thiobacillus, Micrococcus, and Paracoccus).
No other genera associated with nitrification (Nitrosococcus, Nitrobacter, Nitrospina, or Nitrococcus,) or denitrification (Rhizobiales and Rhodanobacter) were found in any of our samples. The x-axis represents sampling months with months B3 and B0 being before monochloramine treatment and months M1–M6 representing the first six months of treatment. The y-axis represents the relative abundance.

References

    1. Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17: 297–302. - PubMed
    1. Martiny AC, Jorgensen TM, Albrechtsen HJ, Arvin E, Molin S (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69: 6899–6907. - PMC - PubMed
    1. Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenomic analyses of drinking water receiving different disinfection treatments. Appl Environ Microbiol 78: 6095–6102. - PMC - PubMed
    1. Douterelo I, Sharpe RL, Boxall JB (2013) Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res 47: 503–516. - PubMed
    1. Henne K, Kahlisch L, Brettar I, Hofle MG (2012) Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany. Appl Environ Microbiol 78: 3530–3538. - PMC - PubMed

Publication types

MeSH terms