Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014:385:307-26.
doi: 10.1007/82_2014_391.

Pathogenesis and vaccination of influenza A virus in swine

Affiliations
Review

Pathogenesis and vaccination of influenza A virus in swine

Daniela S Rajao et al. Curr Top Microbiol Immunol. 2014.

Abstract

Swine influenza is an acute respiratory disease of pigs caused by influenza A virus (IAV) and characterized by fever followed by lethargy, anorexia, and serous nasal discharge. The disease progresses rapidly and may be complicated when associated with other respiratory pathogens. IAV is one of the most prevalent respiratory pathogens of swine, resulting in substantial economic burden to pork producers. In the past 10-15 years, a dramatic evolution of the IAV in U.S. swine has occurred, resulting in the co-circulation of many antigenically distinct IAV strains, derived from 13 phylogenetically distinct hemagglutinin clusters of H1 and H3 viruses. Vaccination is the most common strategy to prevent influenza in pigs, however, the current diverse IAV epidemiology poses a challenge for the production of efficacious and protective vaccines. A concern regarding the use of traditional inactivated vaccines is the possibility of inducing vaccine-associated enhanced respiratory disease (VAERD) when vaccine virus strains are mismatched with the infecting strain. In this review, we discuss the current epidemiology and pathogenesis of swine influenza in the United States, different vaccines platforms with potential to control influenza in pigs, and the factors associated with vaccine-associated disease enhancement.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources