Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug;124(8):3489-500.
doi: 10.1172/JCI71981. Epub 2014 Jul 18.

Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity

Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity

Jacqueline F Rivera et al. J Clin Invest. 2014 Aug.

Abstract

Type 2 diabetes (T2D) is characterized by a deficiency in β cell mass, increased β cell apoptosis, and extracellular accumulation of islet amyloid derived from islet amyloid polypeptide (IAPP), which β cells coexpress with insulin. IAPP expression is increased in the context of insulin resistance, the major risk factor for developing T2D. Human IAPP is potentially toxic, especially as membrane-permeant oligomers, which have been observed to accumulate within β cells of patients with T2D and rodents expressing human IAPP. Here, we determined that β cell IAPP content is regulated by autophagy through p62-dependent lysosomal degradation. Induction of high levels of human IAPP in mouse β cells resulted in accumulation of this amyloidogenic protein as relatively inert fibrils within cytosolic p62-positive inclusions, which temporarily averts formation of toxic oligomers. Mice hemizygous for transgenic expression of human IAPP did not develop diabetes; however, loss of β cell-specific autophagy in these animals induced diabetes, which was attributable to accumulation of toxic human IAPP oligomers and loss of β cell mass. In human IAPP-expressing mice that lack β cell autophagy, increased oxidative damage and loss of an antioxidant-protective pathway appeared to contribute to increased β cell apoptosis. These findings indicate that autophagy/lysosomal degradation defends β cells against proteotoxicity induced by oligomerization-prone human IAPP.

PubMed Disclaimer

Figures

Figure 9
Figure 9. mRNA levels of the antioxidant genes Gstm1 and Sod1 in islets from hemizygous h-IAPP transgenic mice deficient in autophagy.
Levels of Gstm1 and Sod1 mRNA were evaluated by RT-qPCR in islets isolated from control (9 weeks, n = 4), h-IAPP+/– (9 weeks, n = 3), Atg7Δβcell (9 weeks, n = 3), and h-IAPP+/–:Atg7Δβcell (9 weeks, n = 3) mice. Cyclophilin was used as housekeeping gene. Data are expressed as mean ± SEM; *P < 0.05; **P < 0.01; #P < 0.05, versus Atg7Δβcell mice.
Figure 8
Figure 8. Antioxidant NRF2 is reduced in hemizygous h-IAPP transgenic mice deficient in autophagy.
(A) Protein levels of NRF2 were assessed by Western blot using islet lysates obtained from control (9 weeks, n = 3), h-IAPP+/– (9 weeks, n = 3), Atg7Δβcell (9 weeks, n = 3), and h-IAPP+/–:Atg7Δβcell mice (9 weeks, n = 3). GAPDH was used as loading control. The graph represents the quantification of NRF2 protein levels. Data are expressed as mean ± SEM; *P < 0.05; #P < 0.05, versus control and h-IAPP+/– mice. (B) NRF2 and p62 levels were assessed by immunofluorescence in pancreatic sections from control, h-IAPP+/–, Atg7Δβcell, and h-IAPP+/–:Atg7Δβcell mice (NRF2, red; p62, white; nuclei, blue). Scale bar: 50 μm. (C) Images of islets from Atg7Δβcell and h-IAPP+/–:Atg7Δβcell mice showing cytosolic and nuclear staining of NRF2 (NRF2, red; IAPP, green; nuclei, blue). Arrows indicate nuclei. Scale bar: 12 μm.
Figure 7
Figure 7. Deficiency in autophagy increases the oxidative damage in β cells of hemizygous h-IAPP transgenic mice.
(A) Nitrotyrosine levels were assessed by immunofluorescence in pancreatic tissue from control, h-IAPP+/–, Atg7Δβcell, and h-IAPP+/–:Atg7Δβcell mice (nitrotyrosine, red; IAPP, white; nuclei, blue). The insets show higher magnification. (B) Quantification of the fractional area of β cell positive for nitrotyrosine (signal above background) in Atg7Δβcell (15 weeks, n = 3) and h-IAPP+/–:Atg7Δβcell mice (12 ± 1 weeks, n = 3) (expressed in percentage). 10–17 islets per section were analyzed. Data are expressed as mean ± SEM; **P < 0.01. Scale bar: 50 μm.
Figure 6
Figure 6. Deficiency in autophagy induces diabetes, impaired β cell function, loss of β cell mass, and increased β cell apoptosis in hemizygous h-IAPP transgenic mice.
(A) Fasting blood glucose in control, h-IAPP+/–, Atg7Δβcell, and h-IAPP+/–:Atg7Δβcell mice. The number of mice per group of a given age is provided in Supplemental Table 1. ***P < 0.001. (B) IPGTT performed by intraperitoneal injection of 2 g/kg glucose in control and h-IAPP+/–:Atg7Δβcell mice (both 8 weeks, n = 6) and h-IAPP+/– and Atg7Δβcell mice (both 8 weeks, n = 7). The graph represents area under the curve (AUC). #P < 0.05, versus h-IAPP+/– mice; ***P < 0.001, versus Atg7Δβcell mice. (C) Plasma insulin/glucose ratio and (D) C-peptide/glucose ratio in control (14 ± 1 weeks, n = 8), h-IAPP+/– (14 ± 1 weeks, n = 8), Atg7Δβcell (15 weeks, n = 4), and h-IAPP+/–:Atg7Δβcell (12 ± 1 weeks, n = 6) mice. *P < 0.05, versus Atg7Δβcell and h-IAPP+/– mice for C-peptide/glucose ratio; ***P < 0.001. (E) β Cell mass in the 4 groups of mice at given mean age: control (14 ± 1 weeks, n = 4), h-IAPP+/– (14 ± 1 weeks, n = 4), Atg7Δβcell (15 weeks, n = 3), and h-IAPP+/–:Atg7Δβcell mice (12 ± 1 weeks, n = 6). *P < 0.05, versus all groups. (F) β Cell apoptosis (TUNEL) in the 4 groups of mice at given mean age: control (13 ± 1 weeks, n = 3), h-IAPP+/– (13 ± 2 weeks, n = 3), Atg7Δβcell (15 weeks, n = 3), and h-IAPP+/–:Atg7Δβcell (12 ± 1 weeks, n = 3) mice. *P < 0.05, versus Atg7Δβcell mice; **P < 0.01, versus h-IAPP+/– mice. Data are expressed as mean ± SEM.
Figure 5
Figure 5. h-IAPP toxic oligomers accumulate in β cells of hemizygous h-IAPP transgenic mice deficient in autophagy.
(A) Protein levels of ATG7, LC3, and p62 were assessed by Western blot using islet protein lysates obtained from Atg7Δβcell (9 weeks, n = 3) mice and control, h-IAPP+/–, and h-IAPP+/–:Atg7Δβcell (all 9 weeks, n = 4) mice. GAPDH was used as loading control. The asterisk indicates tightly aggregated p62. (B) Quantification of the percentage of β cells positive for cytosolic A11 labeling in h-IAPP+/–:Atg7Δβcell and h-IAPP+/– mice. Included are the percentages of β cells positive (white) or negative (black) for p62 among A11-positive β cells. Data are expressed as mean ± SEM. (C) Confocal images of a representative islet from a h-IAPP+/–:Atg7Δβcell mouse pancreatic section stained with anti-oligomer antibody A11 (oligomers, red; p62, green; IAPP, yellow; nuclei, blue). Scale bar: 24 μm.
Figure 4
Figure 4. Insoluble p62-sequestered IAPP is targeted for lysosomal degradation.
(A) Islets were isolated from 9- to 10-week-old r-TG and h-TG mice. Islet lysates were used to separate total cellular protein into soluble and insoluble fractions. Levels of p62 and IAPP were assessed by Western blot. GAPDH was used as control. A representative image from 4 independent experiments is shown. (B) Soluble and insoluble fractions from mouse islets were subjected to immunoprecipitation with anti-p62 antibody. Immunoprecipitated proteins were resolved by SDS-PAGE and immunoblotted with anti-IAPP antibody. (C) Thioflavine S staining in pancreatic sections from 9- to 10-week-old h-TG mice (Thioflavin S, green; p62, red; insulin, yellow; nuclei, blue) (scale bar: 20 μm). A higher magnification of an inclusion is presented on the right (scale bar: 10 μm). The dotted outlines on the insulin panel indicate the position of thioflavin S– and p62-positive inclusions. (D) Fluorescent confocal images of p62-positive inclusion using (p62, yellow; LC3, red; cathepsin D, green) in pancreatic tissue from h-TG mice (original magnification, ×63). Scale bar: 10 μm.
Figure 3
Figure 3. IAPP is ubiquitinated.
(A) Islets were isolated from 4- to 6-month-old WT and HIP rats. Islet lysates were subjected to immunoprecipitation with a rabbit anti-IAPP antibody. Immunoprecipitated proteins were resolved by SDS-PAGE and immunoblotted with a mouse anti-ubiquitin antibody. Levels of IAPP are shown as control. Arrows indicate polyubiquitinated IAPP (n = 3). (B) Islets were isolated from 4- to 6-month-old HIP rats. Insoluble fraction was obtained by a detergent extraction protocol and dissolved in 6 M guanidine plus 0.5 M DTT for 1 hour at 37°C. Fractions were collected by HPLC and then immunoblotted with a rabbit anti-IAPP antibody. The membrane was then stripped and immunoblotted with a mouse anti-ubiquitin antibody. A representative blot from 2 independent experiments is shown. Boxes indicate bands detected by both anti-IAPP and anti-ubiquitin antibodies.
Figure 2
Figure 2. IAPP interacts with p62 in β cells.
(A) INS 832/13 cells were transduced at 400 MOI for 36 hours with r-IAPP (R) or h-IAPP (H) adenoviruses. Cell lysates were subjected to immunoprecipitation (IP) with anti-p62 antibody or IgG as control. Immunoprecipitated proteins were resolved by SDS-PAGE and immunoblotted (IB) with anti-IAPP antibody. Levels of GAPDH are shown as internal and loading control. A representative image from 5 independent experiments is shown. C, nontransduced cells (B) Islets were isolated from 9- to 10-week-old WT, r-IAPP (r-TG), and homozygous h-IAPP transgenic (h-TG) mice. Islet lysates were subjected to immunoprecipitation with anti-p62 antibody or IgG as control. Immunoprecipitated proteins were resolved by SDS-PAGE and immunoblotted with anti-IAPP antibody. Levels of GAPDH are shown as internal and loading control. A representative image from 3 independent experiments is shown.
Figure 1
Figure 1. Intracellular IAPP levels are modulated by regulators of autophagy.
(A) INS 832/13 cells were treated with rapamycin (Rapa, 10 nM) for 40 hours, lysosomal inhibitors (Lyso I) (E-64-d, 10 μg/ml and pepstatin A, 10 μg/ml) for 24 hours, or left untreated (C). Levels of IAPP were assessed by Western blot. GAPDH was used as loading control. The graph represents the quantification of the processed/mature form of IAPP (n = 4). (B) Human islets were treated with rapamycin (10 nM) for 30 hours, lysosomal inhibitors (E-64-d, 10 μg/ml and pepstatin A, 10 μg/ml) for 30 hours, or left untreated. Levels of IAPP were assessed by Western blot. GAPDH was used as loading control. The graph represents the quantification of IAPP protein levels (n = 3). Data are expressed as mean ± SEM; *P < 0.05; ***P < 0.001.

Comment in

References

    1. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–110. doi: 10.2337/diabetes.52.1.102. - DOI - PubMed
    1. Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev. 2008;29(3):303–316. doi: 10.1210/er.2007-0037. - DOI - PMC - PubMed
    1. Gurlo T, et al. Evidence for proteotoxicity in β cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol. 2010;176(2):861–869. doi: 10.2353/ajpath.2010.090532. - DOI - PMC - PubMed
    1. Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. Diabetes due to a progressive defect in β-cell mass in rats transgenic for human islet amyloid polypeptide (HIP rat) — a new model for type 2 diabetes. Diabetes. 2004;53(6):1509–1516. doi: 10.2337/diabetes.53.6.1509. - DOI - PubMed
    1. Hoppener JWM, et al. Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model. Diabetologia. 1999;42(4):427–434. doi: 10.1007/s001250051175. - DOI - PubMed

Publication types

MeSH terms