Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 7;13(11):4942-58.
doi: 10.1021/pr5002675. Epub 2014 Aug 4.

Decoding the s-nitrosoproteomic atlas in individualized human colorectal cancer tissues using a label-free quantitation strategy

Affiliations

Decoding the s-nitrosoproteomic atlas in individualized human colorectal cancer tissues using a label-free quantitation strategy

Yi-Ju Chen et al. J Proteome Res. .

Abstract

The abnormal S-nitrosylation induced by the overexpression and activation of inducible nitric oxide synthase (iNOS) modulates many human diseases, such as inflammation and cancer. To delineate the pathophysiological S-nitrosoproteome in cancer patients, we report an individualized S-nitrosoproteomic strategy with a label-free method for the site-specific quantification of S-nitrosylation in paired tumor and adjacent normal tissues from 11 patients with colorectal cancer (CRC). This study provides not only the first endogenous human S-nitrosoproteomic atlas but also the first individualized human tissue analysis, identifying 174 S-nitrosylation sites in 94 proteins. Fourteen novel S-nitrosylation sites with a high frequency of elevated levels in 11 individual patients were identified. An individualized S-nitrosylation quantitation analysis revealed that the detected changes in S-nitrosylation were regulated by both the expression level and the more dramatic post-translational S-nitrosylation of the targeted proteins, such as thioredoxin, annexin A4, and peroxiredoxin-4. These endogenous S-nitrosylated proteins illustrate the network of inflammation/cancer-related and redox reactions mediated by various S-nitrosylation sources, including iNOS, transnitrosylase, or iron-sulfur centers. Given the demonstrated sensitivity of individualized tissue analysis, this label-free approach may facilitate the study of the vastly under-represented S-nitrosoproteome and enable a better understanding of the effect of endogenous S-nitrosylation in cancer.

Keywords: S-nitrosylation; biotin switch; colorectal cancer; label-free quantitation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources