Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 27;136(34):12027-34.
doi: 10.1021/ja505296e. Epub 2014 Aug 18.

Emergent ion-gated binding of cationic host-guest complexes within cationic M12L24 molecular flasks

Affiliations

Emergent ion-gated binding of cationic host-guest complexes within cationic M12L24 molecular flasks

Carson J Bruns et al. J Am Chem Soc. .

Abstract

"Molecular flasks" are well-defined supramolecular cages that can encapsulate one or more molecular guests within their cavities and, in so doing, change the physical properties and reactivities of the guests. Although molecular flasks are powerful tools for manipulating matter on the nanoscale, most of them are limited in their scope because of size restrictions. Recently, however, increasingly large and diverse supramolecular cages have become available with enough space in their cavities for larger chemical systems such as polymers, nanoparticles, and biomolecules. Here we report how a class of metallosupramolecular cages known as M12L24 polyhedra have been adapted to serve as nanometer-scale containers for solutions of a pseudorotaxane host-guest complex based on a tetracationic cyclophane host, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), and a 1,5-dioxynaphthalene (DNP) guest. Remarkably, the hierarchical integration of pseudorotaxanes and M12L24 superhosts causes the system to express stimulus-responsive behavior, a property which can be described as emergent because neither the DNP⊂CBPQT(4+) nor the M12L24 assemblies exhibit this behavior independently. The DNP-containing M12L24 molecular flasks are effectively "sealed off" to CBPQT(4+) until ions are added as a stimulus to "open" them. The electrolyte stimulus reduces the electrostatic screening distance in solution, allowing favorable DNP⊂CBPQT(4+) host-guest interactions to overcome repulsive Coulombic interactions between the cationic M12L24 cages and CBPQT(4+) rings. This unusual example of ion-gated transport into chemical nanocontainers is reminiscent of transmembrane ion channels which act as gates to the cell, with the important difference that this system is reversible and operates at equilibrium.

PubMed Disclaimer

LinkOut - more resources