Bacterial 2,3-butanediol dehydrogenases
- PMID: 25056
- DOI: 10.1007/BF00406037
Bacterial 2,3-butanediol dehydrogenases
Abstract
Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidezed only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and reduction were pH 9 and pH 7, respectively. The optimum temperature was about 60 degrees C. The molecular weight was 100000 to 107000. The Km-values were 3.3 mM for D(-)butanediol, 6.25 mM for meso-butanediol, 0.53 mM for acetoin, 0.2 mM for NAD, 0.1 mM for NADH, 87 mM for diacetyl, 38 mM for 1,2-propanediol; 2,3-pentanedion was not a substrate for this enzyme. The L(+)butanediol dehydrogenase from Serratia marcescens was purified 57-fold (specific activity 22.3). Besides NAD or NADH no cofactors were required. The optimum value for oxidation was about pH9 and for reduction pH 4.5. The optimum temperature was 32-36 degrees C. The molecular weight was 100000 to 107000. The Km-values were 5 mM for meso-butanediol, 10 mM for racemic butanediol, 6.45 for acetoin, 1 mM for NAD, 0.25 mM for NADH, 2.08 mM for diacetyl, 16.7 mM for 2,3-pentanedion and 11.8 mM for 1,2-propanediol.
Similar articles
-
A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.Appl Microbiol Biotechnol. 2014 Feb;98(3):1175-84. doi: 10.1007/s00253-013-4959-x. Epub 2013 May 12. Appl Microbiol Biotechnol. 2014. PMID: 23666479
-
Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.J Ind Microbiol Biotechnol. 2014 Sep;41(9):1319-27. doi: 10.1007/s10295-014-1472-x. Epub 2014 Jul 1. J Ind Microbiol Biotechnol. 2014. PMID: 24981852
-
Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.J Ind Microbiol Biotechnol. 2015 May;42(5):779-86. doi: 10.1007/s10295-015-1598-5. Epub 2015 Feb 10. J Ind Microbiol Biotechnol. 2015. PMID: 25663525
-
Enzymes and pathways in microbial production of 2,3-butanediol and 3-acetoin isomers.Crit Rev Biotechnol. 2023 Feb;43(1):67-81. doi: 10.1080/07388551.2021.2004990. Epub 2021 Dec 26. Crit Rev Biotechnol. 2023. PMID: 34957872 Review.
-
Short chain diol metabolism in human disease states.Trends Biochem Sci. 1990 Jan;15(1):26-30. doi: 10.1016/0968-0004(90)90127-w. Trends Biochem Sci. 1990. PMID: 2107613 Review.
Cited by
-
C4 Bacterial Volatiles Improve Plant Health.Pathogens. 2021 May 31;10(6):682. doi: 10.3390/pathogens10060682. Pathogens. 2021. PMID: 34072921 Free PMC article. Review.
-
The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features.BMC Genomics. 2012 Dec 10;13:690. doi: 10.1186/1471-2164-13-690. BMC Genomics. 2012. PMID: 23227809 Free PMC article.
-
A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals.PLoS One. 2010 Jan 26;5(1):e8860. doi: 10.1371/journal.pone.0008860. PLoS One. 2010. PMID: 20126645 Free PMC article.
-
Microbial production of 2,3-butanediol for industrial applications.J Ind Microbiol Biotechnol. 2019 Nov;46(11):1583-1601. doi: 10.1007/s10295-019-02231-0. Epub 2019 Aug 29. J Ind Microbiol Biotechnol. 2019. PMID: 31468234 Review.
-
Metabolic engineering of Bacillus subtilis for growth on overflow metabolites.Microb Cell Fact. 2013 Jul 25;12:72. doi: 10.1186/1475-2859-12-72. Microb Cell Fact. 2013. PMID: 23886069 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources