Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 28;9(7):e102504.
doi: 10.1371/journal.pone.0102504. eCollection 2014.

True zero-training brain-computer interfacing--an online study

Affiliations

True zero-training brain-computer interfacing--an online study

Pieter-Jan Kindermans et al. PLoS One. .

Abstract

Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Drawing of the user interface at the end of a unsupervised block of 15 letters (30 trials).
The target text in the first line is always present for the subject. Text spelled with the unsupervised method appears letter-by-letter in the second line, and the text after re-analysis with the posthoc method is shown in the third line. In the lower part of the screen, circle positions visualize the auditory scene from a top view. Each circle encodes one out of six tones/tone directions relative to the user, who is positioned in the middle of the ring of speakers (fixation cross). After selecting a group of letters (duration: one trial), the user virtually moves into the corresponding circle and can select a letter from within this circle by a second trial.) The result shown in this figure corresponds to the first unsupervised block of subject nbf.
Figure 2
Figure 2. Schematic display of the course of an experimental session.
Figure 3
Figure 3. Grand average ERP responses (n = 10) for supervised (left) and unsupervised online spelling blocks (right).
Top row: Responses evoked by target (blue) and non-target (green) stimuli for channels Cz (thick) and F5 (thin). Middle row: Scalp plots visualizing the mean target (t) and non-target (nt) responses within five selected time intervals (see grey markings of the top row from 130 ms to 460 ms post stimulus). Bottom row: Scalp plots visualizing the spatial distribution of class-discriminant information, expressed as the signed and scaled area under the receiver-operator characteristic curve (ssAUC).
Figure 4
Figure 4. Performance comparisons (trial-based selection accuracy).
For each user and the grand average (GA), the performances of three experimental blocks are given. Chance level performance is at formula image. Top plot: Online performance of the three blocks per user classified by the supervised LDA approach. Per subject, the classifier had been pre-trained on calibration data (not shown) and kept fix for all three blocks. Middle plot: Online performance of blocks controlled by the unsupervised classifier. The unsupervised classifier had been initialized randomly before each individual block (three times per subject). Bottom plot: performance of the posthoc re-analysis method for the unsupervised blocks. The posthoc classifier, too, had been initialized randomly before each block.
Figure 5
Figure 5. Spelling results for subject nbf during the unsupervised blocks.
Per block, the top line represents the desired text, the middle line displays text produced online by the unsupervised classification. Text predicted by the posthoc re-analysis at the end of the block is shown at the bottom line. Two trials are needed to determine a symbol. Individual selection errors (wrong trials) of both methods are marked by black squares directly below each symbol. Please note that the classifier was re-initialized randomly at the beginning of each block.
Figure 6
Figure 6. Evolution of errors performed over time ( trials) by the unsupervised method for the three unsupervised blocks.
Time is on the horizontal axis, while the lines represent users. The order of the users equals that of Fig. 4, with formula image represented by the top line and formula image by the bottom line. For each trial and user, a green square indicates an accurate selection, a black one marks an error. Clearly, the unsupervised classifier commits most erroneous decisions shortly after its random initialization at the beginning of each novel block. In the majority of cases users were able to effectively control the BCI by the end of a block.
Figure 7
Figure 7. Selection errors committed by the posthoc evaluation method after having processing the data of one entire block.
The data displayed stems from the same blocks as in Fig.6, which had been recorded while feedback was given by the unsupervised method. With the exception of three difficult blocks (first blocks of users nbe and jh, and third block of user nbb) the posthoc re-analysis obviously outperforms the original online performance gained by the unsupervised method (see Fig.6). It effectively corrected most initial mistakes at the beginning of each block, thus recovering communication from the very first trial on. Both unsupervised methods (online and posthoc) had trouble selecting a good performing classifier for the three difficult blocks.
Figure 8
Figure 8. Comparison of the simulated grand average performance (n = 10) of the three classification approaches over time.
The horizontal axis shows 18 sub-blocks of 5 symbol selections (10 trials) each, ordered chronologically in six experimental blocks. The performance on the vertical axis displays, how many of the 10 trials have on average been classified without fault (in absolute numbers). As not all the three classification approaches were applied online in each of the six blocks, this plot was generated by a simulated online use of the fixed supervised classifier (solid blue) and the constantly adapting unsupervised classifier (solid green) after a single initial random initialization. The unsupervised classifier was allowed to learn throughout the 18 sub-blocks without being re-set. In addition, the performance of the post-hoc unsupervised classifier is plotted (red, dotted). It has re-classified all trials in retrospection, after having learned unsupervised on the whole data from all 18 sub-blocks. Statistical significant differences between the supervised and the unsupervised performance (p = 0.05) are indicated by asterisks.
Figure 9
Figure 9. We present the individual errors made in the simulated long experiment.
The unsupervised method makes most mistakes in the first block but performs at the same level as the supervised method in the following blocks. This demonstrates that the block size we used does put the unsupervised method at a disadvantage in the online study. On top of that we see that the posthoc analysis is able to correct these initial mistakes. The result is that unlike a real calibration session, the first unsupervised block can be used for communication. Finally, during the last block, the unsupervised methods perform slightly better than the supervised one.

References

    1. Kindermans PJ, Verstraeten D, Schrauwen B (2012) A Bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI. PLoS ONE 7: e33758. - PMC - PubMed
    1. Kindermans PJ, Verschore H, Verstraeten D, Schrauwen B (2012) A P300 BCI for the masses: Prior information enables instant unsupervised spelling. In: Advances in Neural Information Processing Systems 25 . pp. 719–727.
    1. Kindermans PJ, Tangermann M, Müller KR, Schrauwen B, (in press) Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training erp speller. Journal of Neural Engineering. - PubMed
    1. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, et al. (1999) A spelling device for the paralysed. Nature 398: 297–298. - PubMed
    1. Müller KR, Krauledat M, Dornhege G, Curio G, Blankertz B (2004) Machine learning techniques for brain-computer interfaces. Biomed Tech 49: 11–22.

Publication types

LinkOut - more resources