Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Dec 1:43:89-96.
doi: 10.1016/j.niox.2014.07.004. Epub 2014 Jul 27.

Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens

Affiliations
Review

Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens

Srinivas Agurla et al. Nitric Oxide. .

Abstract

Stomata facilitate the loss of water, as well as CO2 uptake for photosynthesis. In addition, stomatal closure restricts the entry of pathogens into leaves and forms a part of plant defense response. Plants have evolved ways to modulate stomata by plant hormones as well as microbial elicitors, including pathogen/microbe associated molecular patterns. Stomatal closure initiated by signals of either abiotic or biotic factors results from the loss of guard cell turgor due mainly to K(+)/anion efflux. Nitric oxide (NO) is a key element among the signaling elements leading to stomatal closure, hypersensitive response and programmed cell death. Due to the growing importance of NO as signaling molecule in plants, and the strong relation between stomata and pathogen resistance, we attempted to present a critical overview of plant innate immunity, in relation to stomatal closure. The parallel role of NO during plant innate immunity and stomatal closure is highlighted. The cross-talk between NO and other signaling components, such as reactive oxygen species (ROS) is discussed. The possible sources of NO and mechanisms of NO action, through post-translational modification of proteins are discussed. The mini-review is concluded with remarks on the existing gaps in our knowledge and suggestions for future research.

Keywords: Defense response in plants; Nitric oxide; Nitrosylation; Reactive oxygen species; Stomatal closure.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources