Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 28;30(2):192-208.
doi: 10.1016/j.devcel.2014.06.021.

Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade

Affiliations
Free article

Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade

Magnus Baumgardt et al. Dev Cell. .
Free article

Abstract

During central nervous system (CNS) development, progenitors typically divide asymmetrically, renewing themselves while budding off daughter cells with more limited proliferative potential. Variation in daughter cell proliferation has a profound impact on CNS development and evolution, but the underlying mechanisms remain poorly understood. We find that Drosophila embryonic neural progenitors (neuroblasts) undergo a programmed daughter proliferation mode switch, from generating daughters that divide once (type I) to generating neurons directly (type 0). This typeI>0 switch is triggered by activation of Dacapo (mammalian p21(CIP1)/p27(KIP1)/p57(Kip2)) expression in neuroblasts. In the thoracic region, Dacapo expression is activated by the temporal cascade (castor) and the Hox gene Antennapedia. In addition, castor, Antennapedia, and the late temporal gene grainyhead act combinatorially to control the precise timing of neuroblast cell-cycle exit by repressing Cyclin E and E2f. This reveals a logical principle underlying progenitor and daughter cell proliferation control in the Drosophila CNS.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources