Improving dermoscopy image classification using color constancy
- PMID: 25073179
- DOI: 10.1109/JBHI.2014.2336473
Improving dermoscopy image classification using color constancy
Abstract
Robustness is one of the most important characteristics of computer-aided diagnosis systems designed for dermoscopy images. However, it is difficult to ensure this characteristic if the systems operate with multisource images acquired under different setups. Changes in the illumination and acquisition devices alter the color of images and often reduce the performance of the systems. Thus, it is important to normalize the colors of dermoscopy images before training and testing any system. In this paper, we investigate four color constancy algorithms: Gray World, max-RGB, Shades of Gray, and General Gray World. Our results show that color constancy improves the classification of multisource images, increasing the sensitivity of a bag-of-features system from 71.0% to 79.7% and the specificity from 55.2% to 76% using only 1-D RGB histograms as features.
Similar articles
-
Quantitative color assessment of dermoscopy images using perceptible color regions.Skin Res Technol. 2012 Nov;18(4):462-70. doi: 10.1111/j.1600-0846.2011.00594.x. Epub 2012 Jan 24. Skin Res Technol. 2012. PMID: 22272727
-
Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location.Skin Res Technol. 2015 Nov;21(4):466-73. doi: 10.1111/srt.12216. Epub 2015 Mar 22. Skin Res Technol. 2015. PMID: 25809473 Free PMC article.
-
A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images.Skin Res Technol. 2013 Feb;19(1):e490-7. doi: 10.1111/j.1600-0846.2012.00670.x. Epub 2012 Aug 13. Skin Res Technol. 2013. PMID: 22882675
-
Biologically Inspired QuadTree Color Detection in Dermoscopy Images of Melanoma.IEEE J Biomed Health Inform. 2019 Mar;23(2):570-577. doi: 10.1109/JBHI.2018.2841428. Epub 2018 May 28. IEEE J Biomed Health Inform. 2019. PMID: 29993590
-
Dermoscopy and skin imaging light sources: a comparison and review of spectral power distribution and color consistency.J Biomed Opt. 2022 Aug;27(8):080902. doi: 10.1117/1.JBO.27.8.080902. Epub 2022 Aug 8. J Biomed Opt. 2022. PMID: 36452032 Free PMC article. Review.
Cited by
-
Checklist for Evaluation of Image-Based Artificial Intelligence Reports in Dermatology: CLEAR Derm Consensus Guidelines From the International Skin Imaging Collaboration Artificial Intelligence Working Group.JAMA Dermatol. 2022 Jan 1;158(1):90-96. doi: 10.1001/jamadermatol.2021.4915. JAMA Dermatol. 2022. PMID: 34851366 Free PMC article.
-
Multiscale and Hierarchical Feature-Aggregation Network for Segmenting Medical Images.Sensors (Basel). 2022 Apr 30;22(9):3440. doi: 10.3390/s22093440. Sensors (Basel). 2022. PMID: 35591129 Free PMC article.
-
Deep skin diseases diagnostic system with Dual-channel Image and Extracted Text.Front Artif Intell. 2023 Oct 19;6:1213620. doi: 10.3389/frai.2023.1213620. eCollection 2023. Front Artif Intell. 2023. PMID: 37928449 Free PMC article.
-
Melanoma Skin Cancer Recognition with a Convolutional Neural Network and Feature Dimensions Reduction with Aquila Optimizer.Diagnostics (Basel). 2025 Mar 18;15(6):761. doi: 10.3390/diagnostics15060761. Diagnostics (Basel). 2025. PMID: 40150103 Free PMC article.
-
Combining State-of-the-Art Pre-Trained Deep Learning Models: A Noble Approach for Skin Cancer Detection Using Max Voting Ensemble.Diagnostics (Basel). 2023 Dec 30;14(1):89. doi: 10.3390/diagnostics14010089. Diagnostics (Basel). 2023. PMID: 38201399 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources