Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Jul 29:14:123.
doi: 10.1186/1471-2466-14-123.

Inflammatory response in mixed viral-bacterial community-acquired pneumonia

Affiliations
Comparative Study

Inflammatory response in mixed viral-bacterial community-acquired pneumonia

Salvador Bello et al. BMC Pulm Med. .

Abstract

Background: The role of mixed pneumonia (virus+bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP.

Methods: We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial).

Results: Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%.

Conclusions: Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow diagram for patient enrollment or exclusion in the study. After excluding patients who did not meet the inclusion criteria, those with no comprehensive microbiological study, those with a final diagnosis other than CAP, and those with negative microbiological diagnosis, we obtained 185 patients with CAP and isolation of at least 1 microorganism. We subsequently excluded 4 patients with atypical bacteria-involved CAP, all of which were Mycoplasma pneumoniae (1 M pneumoniae + E coli, 1 M pneumoniae + influenza A, 1 M pneumoniae + influenza A + influenza B + syncytial respiratory virus [RSV], and 1 M pneumoniae isolated), and a further 7 due to a bacterial yield of improbable CAP cause because of their low pathogenicity (2 from bacterial group [1 Enterococcus faecalis and 1 Staphylococcus hominis) and 5 from mixed (2 S. hominis + Adenovirus, 1 S. hominis + Virus influenza A + RSV, 1 Staphylococcus coagulase-negative + metapneumovirus, and 1 Morganella morgagnii + coronavirus]). We then had 174 patients with viral, bacterial and mixed pneumonia. A biomarker search could not be performed in three patients, and we finally included 171 patients in our study with both etiology and biomarkers.
Figure 2
Figure 2
Median procalcitonin (PCT) and C reactive protein (CRP) values for bacterial, viral and mixed CAP.
Figure 3
Figure 3
Receiving operating characteristic curve of PCT for differentiating bacterial-involved (bacterial and mixed) from viral CAP. AUC: 0.640, 95% CI: 0.557-0.723. p = 0.002.
Figure 4
Figure 4
Receiving operating characteristic curve of CRP for differentiating mixed from bacterial and viral CAP. AUC: 0.642, 95% CI: 0.537-0.747. p = 0.004.

Similar articles

Cited by

References

    1. Templeton KE, Scheltinga SA, van den Eeden WC, Graffelman AW, van den Broek PJ, Eric CJ, Claas ECJ. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis. 2005;41:345–351. - PMC - PubMed
    1. Jennings LC, Anderson TP, Beynon KA, Chua A, Laing RTR, Werno AM, Young SA, Chambers ST, Murdoch DR. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax. 2008;63:42–48. - PubMed
    1. Johansson N, Kalin M, Tiveljung-Lindell A, Giske CG, Hedlund J. Etiology of community-acquired pneumonia: increased microbiological yield with New diagnostic methods. Clin Infect Dis. 2010;50:202–209. - PMC - PubMed
    1. Lieberman D, Shimoni A, Shemer-Avni Y, Keren-Naos A, Shtainberg R, Lieberman D. Respiratory viruses in adults with community-acquired pneumonia. Chest. 2010;138:811–816. - PMC - PubMed
    1. Marcos MA, Camps M, Pumarola T, Martinez JA, Martinez E, Mensa J, Garcia E, Peñarroja G, Dambrava P, Casas I, de Jiménez Anta MT, Torres A. The role of viruses in the aetiology of community-acquired pneumonia in adults. Antivir Ther. 2006;11:351–359. - PubMed

Publication types

MeSH terms