Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014:114:155-85.
doi: 10.1016/B978-0-12-418693-4.00007-8.

Mechanisms of ictogenesis

Affiliations

Mechanisms of ictogenesis

Thomas Blauwblomme et al. Int Rev Neurobiol. 2014.

Abstract

Epilepsy is a paroxysmal condition characterized by repeated transient seizures separated by longer interictal periods. Ictogenesis describes the processes of transition from the interictal state to a seizure. The processes include a preictal state, with specific clinical signs and a distinct electrophysiology which may provide opportunities to anticipate, or even prevent, seizures. Biological mechanisms of ictogenesis remain poorly understood and may vary between conditions/syndromes. We review here ictogenic processes including the involvement of pyramidal cells, interneurons and astrocytes, GABAergic and glutamatergic signaling, and ionic perturbations. Our review suggests that specific excitatory influences at the transition to an ictal event include (1) GABA receptor activation with a neuronal Cl(-) load and (2) a transient increase in external K(+).

Keywords: Chloride; Epilepsy; GABAergic signaling; Ictogenesis; Interneurons; Potassium; Pyramidal cells.

PubMed Disclaimer

Publication types