Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 20;136(33):11748-56.
doi: 10.1021/ja505212y. Epub 2014 Aug 7.

Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy

Affiliations

Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy

Ping Huang et al. J Am Chem Soc. .

Abstract

All drugs for cancer therapy face several transportation barriers on their tortuous journey to the action sites. To overcome these barriers, an effective drug delivery system for cancer therapy is imperative. Here, we develop a drug self-delivery system for cancer therapy, in which anticancer drugs can be delivered by themselves without any carriers. To demonstrate this unique approach, an amphiphilic drug-drug conjugate (ADDC) has been synthesized from the hydrophilic anticancer drug irinotecan (Ir) and the hydrophobic anticancer drug chlorambucil (Cb) via a hydrolyzable ester linkage. The amphiphilic Ir-Cb conjugate self-assembles into nanoparticles in water and exhibits longer blood retention half-life compared with the free drugs, which facilitates the accumulation of drugs in tumor tissues and promotes their cellular uptake. A benefit of the nanoscale characteristics of the Ir-Cb ADDC nanoparticles is that the multidrug resistance (MDR) of tumor cells can be overcome efficiently. After cellular internalization, the ester bond between hydrophilic and hydrophobic drugs undergoes hydrolysis to release free Ir and Cb, resulting in an excellent anticancer activity in vitro and in vivo.

PubMed Disclaimer

Publication types

MeSH terms