Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 31;10(7):e1004238.
doi: 10.1371/journal.ppat.1004238. eCollection 2014 Jul.

Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete

Affiliations

Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete

Yi-Pin Lin et al. PLoS Pathog. .

Abstract

Lyme disease spirochetes demonstrate strain- and species-specific differences in tissue tropism. For example, the three major Lyme disease spirochete species, Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii, are each most commonly associated with overlapping but distinct spectra of clinical manifestations. Borrelia burgdorferi sensu stricto, the most common Lyme spirochete in the U.S., is closely associated with arthritis. The attachment of microbial pathogens to cells or to the extracellular matrix of target tissues may promote colonization and disease, and the Lyme disease spirochete encodes several surface proteins, including the decorin- and dermatan sulfate-binding adhesin DbpA, which vary among strains and have been postulated to contribute to strain-specific differences in tissue tropism. DbpA variants differ in their ability to bind to its host ligands and to cultured mammalian cells. To directly test whether variation in dbpA influences tissue tropism, we analyzed murine infection by isogenic B. burgdorferi strains that encode different dbpA alleles. Compared to dbpA alleles of B. afzelii strain VS461 or B. burgdorferi strain N40-D10/E9, dbpA of B. garinii strain PBr conferred the greatest decorin- and dermatan sulfate-binding activity, promoted the greatest colonization at the inoculation site and heart, and caused the most severe carditis. The dbpA of strain N40-D10/E9 conferred the weakest decorin- and GAG-binding activity, but the most robust joint colonization and was the only dbpA allele capable of conferring significant joint disease. Thus, dbpA mediates colonization and disease by the Lyme disease spirochete in an allele-dependent manner and may contribute to the etiology of distinct clinical manifestations associated with different Lyme disease strains. This study provides important support for the long-postulated model that strain-specific variations of Borrelia surface proteins influence tissue tropism.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. DbpA variants produced in B. burgdorferi promote distinct binding activities to decorin and dermatan sulfate.
Binding of radiolabeled B. burgdorferi ML23/pBBE22, ML23ΔdbpBA/pBBE22 (“Vector”), and the deletion strain bearing a plasmid encoding DbpA and DbpB (“pDbpBA”), DbpAVS461ΔC11 (“ΔC11”), DbpAVS461 (“VS461”), DbpAPBr (“PBr”) or DbpAN40-D10/E9 (“N40-D10/E9”), to decorin, dermatan sulfate (Derm SO4), or the negative control chondroitin-6-sulfate (see Materials and Methods). The non-adherent B. burgdorferi strain B314 harboring the empty vector pJF21 (“B314/Vector”) was also included as negative control. The percentage of bound bacteria was determined by radioactive counts in bound bacteria normalized to the counts in the inoculum.Each bar represents the mean of four independent determinations ± SEM. Statistical significance was determined using the one-way ANOVA test. Significant (P<0.05) differences in binding relative to the dbpBA deletion strain (“*”), between two strains relative to each other (“#”), or relative to the dbpAVS461ΔC11-complemented strain (“†”) are indicated.
Figure 2
Figure 2. DbpA variants promote distinct B. burgdorferi inoculation site colonization during early infection.
C3H/HeN mice infected with 104 B. burgdorferi strain ML23/pBBE22 (“ML23/Vector”), dbpBA deletion strain ML23ΔdbpBA/pBBE22(“Vector”), or the deletion strain bearing a plasmid encoding the indicated variants were sacrificed at 3 days post-infection. Bacterial loads at the inoculation site were determined by qPCR. Data shown are the mean bacterial loads ± SEM of 10 mice per group. Statistical significance was determined using a one-way ANOVA test. Significant (P<0.05) differences in spirochete number relative to the dbpBA deletion strain (“*”), between two strains relative to each other (“#”), or relative to the dbpAVS461ΔC11-complemented strain (“†”) are indicated. (n.d.): not determined.
Figure 3
Figure 3. DbpA variants promote distinct B. burgdorferi tissue colonization profiles at 28 days post-infection.
C3H/HeN mice infected with 104 B. burgdorferi strain ML23/pBBE22 (“ML23/Vector”), dbpBA deletion strain ML23ΔdbpBA/pBBE22 (“Vector”), or the deletion strain bearing a plasmid encoding the indicated DbpA variants were sacrificed at 28 days post-infection. The bacterial loads at the inoculation site, ear, bladder, heart, knee, and tibiotarsus joint were determined by qPCR. Data shown are the mean bacterial loads ± SEM of 10 mice per group. Statistical significance was determined using a one-way ANOVA test. Significant (P<0.05) differences in spirochete number relative to the dbpBA deletion strain (“*”), between two strains relative to each other (“#”), or relative to the dbpAVS461ΔC11-complemented strain (“†”), are indicated. (n.d.): not determined. These data are described comprehensively with other post-infection time points in Table S1.
Figure 4
Figure 4. Differences in tissue tropism promoted by DbpA variants are not a function of an adaptive immune response.
C3H/HeN-SCID mice infected with 103 B. burgdorferi ML23/pBBE22 (“ML23/Vector”), ML23ΔdbpBA/pBBE22 (“Vector”), or ML23ΔdbpBA bearing a plasmid encoding the indicated DbpA variants/mutant were sacrificed at 28 days post-infection. Bacterial loads at the inoculation site, ear, bladder, heart, knee, and tibiotarsus joint were determined by qPCR. Data shown are the mean bacterial loads ± SEM of 10 mice per group. Statistical significance was determined using a one-way ANOVA test. Significant differences (P<0.05) in spirochete number relative to the ML23ΔdbpBA (“*”), between two strains relative to each other (“#”), or relative to the pdbpAVS461ΔC11-complemented strain (“†”), are indicated.
Figure 5
Figure 5. DbpA variants produced by B. burgdorferi lead to differences in tissue inflammation in C3H/HeN-infected mice.
(A) C3H/HeN mice infected with 104 B. burgdorferi strain ML23/pBBE22 (“ML23/Vector”), dbpBA deletion strain ML23ΔdbpBA/pBBE22 (“Vector”), or the deletion strain bearing a plasmid encoding the indicated DbpA variants were sacrificed at 28 days post-infection. Inflammation of the heart (upper panel) and joints (lower panel) were assessed using Hematoxylin and Eosin staining histopathology. The upper panel and lower panel indicate the higher-resolution (10×, bar  = 58 µm) and lower-resolution (4×, bar  = 141 µm) images. (B) To quantitate inflammation of heart and joint tissues, at least ten random sections from each infection group were scored on a scale of 0–3 for the severity of carditis and arthritis, as indicated in Material and Methods. Statistical significance was determined using a one-way ANOVA test. Data shown are the mean inflammation score ± SD of 5 mice per group. Statistical significance was determined using a one-way ANOVA test. Significant (P<0.05) differences in the inflammation score relative to the dbpBA deletion strain (“*”) or between two strains relative to each other (“#”), are indicated.

References

    1. Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113: 1093–1101. - PMC - PubMed
    1. Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10: 87–99. - PMC - PubMed
    1. Kenedy MR, Lenhart TR, Akins DR (2012) The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol Med Microbiol 66: 1–19. - PMC - PubMed
    1. Steere AC (2001) Lyme disease. N Engl J Med 345: 115–125. - PubMed
    1. Brisson D, Drecktrah D, Eggers CH, Samuels DS (2012) Genetics of Borrelia burgdorferi. Annu Rev Genet 46: 515–536. - PMC - PubMed

Publication types

MeSH terms