Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Nov 15;49(22):6304-12.

Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons

Affiliations
  • PMID: 2509067

Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons

T Shimada et al. Cancer Res. .

Abstract

Human liver microsomes oxidized 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene [B(a)P-7,8-diol] to products that yield DNA adduct formation and umu gene expression in the tester system Salmonella typhimurium TA1535/pSK1002. The umu response is correlated to levels of microsomal cytochrome P-450NF (P-450NF) and nifedipine oxidation in different human liver samples used for activation, and both the (+)- and (-)-enantiomers of B(a)P-7,8-diol gave similar results in these and other assays. The microsomal umu response was inhibited by antibodies raised against P-450NF. 7,8-Benzoflavone stimulated the B(a)P-7,8-diol-dependent umu response observed with purified P-450NF and human liver and lung microsomes. Thus, P-450NF appears to be the major enzyme involved in the activation of B(a)P-7,8-diol in human liver and possibly lung. Similar results were obtained for the activation of trans-9,10-dihydroxy-9,10-dihydrobenzo(b)fluoranthene and trans-3,4-dihydroxy-3,4-dihydro-7,12-dimethylbenz(a)anthracene, compounds that are known to form highly tumorigenic diol-epoxides. The major product of the oxidation of (+)-B(a)P-7,8-diol was the cis-syn isomer of benzo(a)pyrene-7,8,9,10-tetraol[7 beta, 8 alpha, 9 beta, 10 beta-tetrahydroxy-7,8,9,10-tetrahydrobenzo(a)pyrene]. Studies on the nature of the human liver enzymes involved in the formation of B(a)P-7,8-diol [from benzo(a)pyrene] indicate that neither P-450NF, P-450PA, P-450j, P-450DB, nor P-450MP is involved. The correlation of 7,8-diol formation with phenacetin O-deethylation in a set of liver samples and the partial inhibition of the reaction by 7,8-benzoflavone and anti-rat P-450 beta NF-B suggest that the enzyme involved may be P1-450, the human ortholog of rat P-450 beta NF-B, which catalyzes both the formation of B(a)P-7,8-diol and its subsequent oxidation in tissues of polycyclic hydrocarbon-treated rats. The differential effects of inhibitors indicate that benzo(a)pyrene 3-hydroxylation, 4,5-epoxidation, and 9,10-epoxidation are catalyzed by an enzyme(s) distinct from that which forms the 7,8-epoxide. The roles of the human P-450 enzymes differ from the rodent orthologs in the paradigm for bioactivation of polycyclic hydrocarbons; further, flavones appear to have opposing effects on diol formation and further epoxidation in both human liver and lung.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources