Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989;19(2-4):255-75.
doi: 10.3109/03008208909043900.

Effects of interleukin-1 and lipopolysaccharides on protein and carbohydrate metabolism in bovine articular cartilage organ cultures

Affiliations
Comparative Study

Effects of interleukin-1 and lipopolysaccharides on protein and carbohydrate metabolism in bovine articular cartilage organ cultures

T I Morales et al. Connect Tissue Res. 1989.

Abstract

The long term (18 day) metabolic response of bovine articular cartilage to treatment with either E. Coli lipopolysaccharide (LPS) or interleukin 1 was studied. For LPS treatment, incorporation of [35S]sulfate into the large proteoglycan population was inhibited 80% while that into the small interstitial proteoglycans was only inhibited 40%. Incorporation of [3H]serine into the large proteoglycan population was inhibited approximately 72% while incorporation into other protein was inhibited only 16%. Furthermore, the rate of catabolism of [3H]serine labeled proteoglycans was increased 2-fold by LPS treatment while the rate of 3H-labeled general protein catabolism was not affected. Incorporation of [3H]glucosamine into hyaluronate was increased; however a correction for changes in the specific activity of the intracellular [3H]glucosamine precursor pool in LPS-treated cultures indicated that the net amount of hyaluronate synthesized was not altered by LPS treatment. The 3H/35S ratios in isolated chondroitin sulfate disaccharides labeled with [35S]sulfate and [3H]glucosamine precursors were significantly changed during long term LPS treatment, suggesting that general carbohydrate pathways are altered. The 3H/35S changes were larger in the disaccharides isolated from the small proteoglycans indicating that different precursor pools, probably in different cell populations, preferentially synthesize this proteoglycan population. Interleukin-1 affected the same chondrocytic pathways as LPS as shown by a) the extent of inhibition of proteoglycan synthesis, b) the selective inhibition of synthesis of the large proteoglycan species, c) acceleration of proteoglycan catabolism, d) net depletion of proteoglycans from the tissue, e) increases in guanidine HCl extractable [3H]hyaluronate, f) increases in levels of prostaglandin E2 synthesis, g) changes in 3H/35S ratios in glycosaminoglycan chains and, h) minimal effects on general protein synthesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources