Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 15;193(6):3036-44.
doi: 10.4049/jimmunol.1302379. Epub 2014 Aug 4.

IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b

Affiliations

IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b

Cong Wu et al. J Immunol. .

Abstract

The classical activation of macrophages, one of major innate effector cells, requires IFN-γ pretreatment (priming) and subsequent TLR stimuli (triggering). The priming effect of IFN-γ can promote macrophages to secrete higher level of proinflammatory cytokines but lower level of the anti-inflammatory cytokines, enhancing microbicidal and tumoricidal activity of macrophages. However, the underlying molecular mechanisms for IFN-γ-priming effect on macrophage activation remain to be fully understood. microRNAs (miRNAs) are now emerging as important regulators in immune response, including signaling transduction in immune cell function. In this study, we explored the effect of IFN-γ on miRNA expression profiling in macrophages and tried to identify the definite miRNA involved in the priming effect of IFN-γ. We discovered that miR-3473b, which was significantly downregulated after IFN-γ priming, could attenuate the priming effect of IFN-γ. miR-3473b promoted Akt/glycogen synthase kinase 3 signaling and IL-10 production through directly targeting phosphatase and tensin homolog (PTEN) to suppress activation of macrophages and inflammatory response. Our data indicate that IFN-γ beefs up macrophage innate response and cytotoxicity by downregulating miR-3473b to release PTEN from suppression, and then the increase of PTEN contributes to the full activation of IFN-γ-primed macrophages. Our results provide mechanistic insight to priming effect of IFN-γ on macrophage classical activation by identifying an IFN-γ/miR-3473b/PTEN regulatory loop in the regulation of macrophage function.

PubMed Disclaimer

Publication types

MeSH terms

Associated data