Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5
- PMID: 25101084
- PMCID: PMC4107945
- DOI: 10.3389/fimmu.2014.00342
Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5
Abstract
Most organisms rely on innate immune receptors to recognize conserved molecular structures from invading microbes. Two essential innate immune receptors, RIG-I and MDA5, detect viral double-stranded RNA in the cytoplasm. The inflammatory response triggered by these RIG-I-like receptors (RLRs) is one of the first and most important lines of defense against infection. RIG-I recognizes short RNA ligands with 5'-triphosphate caps. MDA5 recognizes long kilobase-scale genomic RNA and replication intermediates. Ligand binding induces conformational changes and oligomerization of RLRs that activate the signaling partner MAVS on the mitochondrial and peroxisomal membranes. This signaling process is under tight regulation, dependent on post-translational modifications of RIG-I and MDA5, and on regulatory proteins including unanchored ubiquitin chains and a third RLR, LGP2. Here, we review recent advances that have shifted the paradigm of RLR signaling away from the conventional linear signaling cascade. In the emerging RLR signaling model, large multimeric signaling platforms generate a highly cooperative, self-propagating, and context-dependent signal, which varies with the subcellular localization of the signaling platform.
Keywords: RecA-like DEAD-box (DExD/H-box) RNA helicase; amyloid-like aggregation; caspase recruitment domain; nucleic-acid sensor; pathogen-associated molecular pattern; prion-like switch; signal transduction; signalosome.
Figures


Similar articles
-
Spatiotemporal dynamics of innate immune signaling via RIG-I-like receptors.Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15778-15788. doi: 10.1073/pnas.1921861117. Epub 2020 Jun 22. Proc Natl Acad Sci U S A. 2020. PMID: 32571931 Free PMC article.
-
LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling.Cytokine. 2015 Aug;74(2):198-206. doi: 10.1016/j.cyto.2015.02.010. Epub 2015 Mar 18. Cytokine. 2015. PMID: 25794939 Free PMC article. Review.
-
Structural basis of innate immune recognition of viral RNA.Cell Microbiol. 2013 Mar;15(3):386-94. doi: 10.1111/cmi.12061. Epub 2012 Nov 21. Cell Microbiol. 2013. PMID: 23110455 Review.
-
LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1512-7. doi: 10.1073/pnas.0912986107. Epub 2010 Jan 8. Proc Natl Acad Sci U S A. 2010. PMID: 20080593 Free PMC article.
-
Oligomerization of RIG-I and MDA5 2CARD domains.Protein Sci. 2020 Feb;29(2):521-526. doi: 10.1002/pro.3776. Epub 2019 Nov 20. Protein Sci. 2020. PMID: 31697400 Free PMC article.
Cited by
-
Autoimmunity gene IRGM suppresses cGAS-STING and RIG-I-MAVS signaling to control interferon response.EMBO Rep. 2020 Sep 3;21(9):e50051. doi: 10.15252/embr.202050051. Epub 2020 Jul 27. EMBO Rep. 2020. PMID: 32715615 Free PMC article.
-
SARS-CoV-2 N Protein Targets TRIM25-Mediated RIG-I Activation to Suppress Innate Immunity.Viruses. 2021 Jul 23;13(8):1439. doi: 10.3390/v13081439. Viruses. 2021. PMID: 34452305 Free PMC article.
-
TRIM38 Induced in Respiratory Syncytial Virus-infected Cells Downregulates Type I Interferon Expression by Competing with TRIM25 to Bind RIG-I.Inflammation. 2024 Aug;47(4):1328-1343. doi: 10.1007/s10753-024-01979-7. Epub 2024 Apr 17. Inflammation. 2024. PMID: 38630167
-
The E3 Ubiquitin Ligase TRIM25 Inhibits Tembusu Virus Replication in vitro.Front Vet Sci. 2021 Sep 14;8:722113. doi: 10.3389/fvets.2021.722113. eCollection 2021. Front Vet Sci. 2021. PMID: 34595229 Free PMC article.
-
Potential of IL-1, IL-18 and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases.Front Pharmacol. 2017 May 22;8:278. doi: 10.3389/fphar.2017.00278. eCollection 2017. Front Pharmacol. 2017. PMID: 28588486 Free PMC article. Review.
References
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous